A069514
Numbers n such that sigma(reversal(n)) = reversal(sigma(n)). Ignore leading 0's.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 14, 41, 124, 194, 333, 421, 491, 1324, 4231, 13324, 17054, 17571, 42331, 45071, 120530, 138465, 386650, 564831, 1130324, 1216360, 1333324, 1727571, 1757271, 1757571, 1787871, 2249422, 4230311, 4233331, 4369634
Offset: 1
Let f(n) = sigma(n). Then f(194) = 294, f(491) = 492, so f(reverse(194)) = reverse(f(194)). Therefore 194 belongs to the sequence.
A124322
Triangle read by rows: T(n,k) is the number of set partitions of {1,2,...,n} (or of any n-set) having k blocks of even size (0<=k<=floor(n/2)).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 5, 7, 3, 12, 25, 15, 37, 91, 60, 15, 128, 329, 315, 105, 457, 1415, 1533, 630, 105, 1872, 6297, 7623, 4410, 945, 8169, 29431, 42150, 27405, 7875, 945, 37600, 151085, 233475, 176715, 69300, 10395, 188685, 802099, 1365243, 1199220, 533610
Offset: 0
T(4,1) = 7 because we have 1234, 14|2|3, 1|24|3, 1|2|34, 13|2|4, 1|23|4 and 12|3|4.
Triangle starts:
1;
1;
1, 1;
2, 3;
5, 7, 3;
12, 25, 15;
37, 91, 60, 15;
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 225.
-
G:=exp(sinh(z)+t*(cosh(z)-1)): Gser:=simplify(series(G,z=0,16)): for n from 0 to 13 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 13 do seq(coeff(P[n],t,j),j=0..floor(n/2)) od; # yields sequence in triangular form
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1)*`if`(irem(i, 2)=0, x^j, 1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..15); # Alois P. Heinz, Mar 08 2015
-
nn = 10; Range[0, nn]! CoefficientList[Series[Exp[y (Cosh[x] - 1) + Sinh[x]], {x, 0, nn}], {x, y}] // Grid (* Geoffrey Critzer, Aug 28 2012*)
Showing 1-2 of 2 results.
Comments