cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102301 a(n) = ((3*n + 1)*2^(n+3) + 9 + (-1)^n)/18.

Original entry on oeis.org

1, 4, 13, 36, 93, 228, 541, 1252, 2845, 6372, 14109, 30948, 67357, 145636, 313117, 669924, 1427229, 3029220, 6407965, 13514980, 28428061, 59652324, 124897053, 260978916, 544327453, 1133394148, 2356266781, 4891490532, 10140895005, 20997617892, 43426891549
Offset: 0

Views

Author

Creighton Dement, Feb 20 2005

Keywords

Comments

A floretion-generated sequence resulting from particular transform of A000975.
Floretion Algebra Multiplication Program, FAMP Code: 2jesforseq[ + .5'i + 'kk' + .5'jk' ], 1vesforseq(n) = A000975(n+2)*(-1)^(n+1), ForType: 1A, LoopType: tes (2nd iteration)

Crossrefs

Programs

  • Magma
    [((3*n+1)*2^(n+3)+9+(-1)^n)/18: n in [0..40]]; // Vincenzo Librandi, Nov 21 2018
  • Mathematica
    Table[((3n+1)*2^(n+3) + 9 + (-1)^n)/18, {n,0,50}] (* G. C. Greubel, Sep 27 2017 *)
    LinearRecurrence[{4, -3, -4, 4}, {1, 4, 13, 36}, 50] (* Vincenzo Librandi, Nov 21 2018 *)
  • PARI
    a(n)=((3*n+1)*2^(n+3)+9+(-1)^n)/18 \\ Charles R Greathouse IV, Oct 16 2015
    

Formula

G.f.: 1/((1-x^2)*(1-2*x)^2).
a(n+1) - 2*a(n) = A000975(n+2) (n-th number without consecutive equal binary digits)
a(n) + a(n+1) = A000337(n+2);
a(n+1) - a(n) = A045883(n+2);
a(n+2) - a(n) = A001787(n+3) ( Number of edges in n-dimensional hypercube );
a(n+2) - 2*a(n+1) + a(n) = A059570(n+3);
Convolution of "Number of fixed points in all 231-avoiding involutions in S_n" (A059570) with the natural numbers (A000027), treating the result as if offset=0. - Graeme McRae, Jul 12 2006
Equals triangle A059260 * A008574 as a vector, where A008574 = [1, 4, 8, 12, 16, 20, ...]. - Gary W. Adamson, Mar 06 2012