cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A113861 a(n) = (1/9)*((6*n - 7)*2^(n-1) - (-1)^n).

Original entry on oeis.org

0, 1, 5, 15, 41, 103, 249, 583, 1337, 3015, 6713, 14791, 32313, 70087, 151097, 324039, 691769, 1470919, 3116601, 6582727, 13864505, 29127111, 61050425, 127693255, 266571321, 555512263, 1155763769, 2401006023, 4980969017, 10319851975, 21355531833, 44142719431
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2006

Keywords

Comments

This sequence is connected with the Collatz problem (see the sequences A045883 and A001045). - Michel Lagneau, Jan 13 2012

Crossrefs

Programs

Formula

a(n+1) - 2*a(n) = A001045(n+2), Jacobsthal numbers. - Paul Curtz, Jul 05 2008
3*a(n) - a(n+1) = -1, -2, 4*a(n). - Paul Curtz, Jul 05 2008
From R. J. Mathar, Nov 11 2008: (Start)
G.f.: x^2*(1+2*x)/((1+x)*(1-2*x)^2).
a(n) + a(n+1) = A014480(n-1). (End)
a(n) = 4*a(n-1) - 4*a(n-2) + (-1)^(n+1), n>2. - Gary Detlefs, Dec 19 2010
a(n) = 3*a(n-1) - 4*a(n-3), n>3. - Gary Detlefs, Dec 19 2010
a(n) = n*2^n - A045883(n). - Michel Lagneau, Jan 13 2012
Starting with "1" = triangle A059260 * A016813 as a vector, where A016813 = (4n + 1): [ 1, 5, 9, 13, ...]. - Gary W. Adamson, Mar 06 2012

A115216 "Correlation triangle" for 2^n.

Original entry on oeis.org

1, 2, 2, 4, 5, 4, 8, 10, 10, 8, 16, 20, 21, 20, 16, 32, 40, 42, 42, 40, 32, 64, 80, 84, 85, 84, 80, 64, 128, 160, 168, 170, 170, 168, 160, 128, 256, 320, 336, 340, 341, 340, 336, 320, 256, 512, 640, 672, 680, 682, 682, 680, 672, 640, 512, 1024, 1280, 1344, 1360, 1364
Offset: 0

Views

Author

Paul Barry, Jan 16 2006

Keywords

Comments

Row sums are A102301. T(2n,n) gives A002450(n+1). Diagonal sums are A115217.
Construction: Take antidiagonal triangle of MM^T where M is the sequence array for the sequence 2^n.
When formated as a square array, this is the self-fusion matrix (as in Example and Mathematica sections) of the sequence (2^n); for interlacing zeros of associated characteristic polynomials, see A202868. [Clark Kimberling, Dec 26 2011]

Examples

			Triangle begins
  1,
  2, 2,
  4, 5, 4,
  8, 10, 10, 8,
  16, 20, 21, 20, 16,
  32, 40, 42, 42, 40, 32,
  ...
Northwest corner of square matrix:
  1....2....4....8....16
  2....5....10...20...40
  4....10...21...42...85
  8....20...41...85...170
  16...40...84...170..341
  ..
		

Crossrefs

Programs

  • Mathematica
    (* A115216 as a square matrix *)
    s[k_] := 2^(k - 1);
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 12}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]];
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
    f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
    Table[f[n], {n, 1, 12}]
    Table[Sqrt[f[n]], {n, 1, 12}]  (* -1+2^n *)
    Table[m[n, n], {n, 1, 12}]  (* A002450 *)
    (* Clark Kimberling, Dec 26 2011 *)

Formula

T(n, k) = Sum_{j=0..n} [j<=k]*2^(k-j)[j<=n-k]*2^(n-k-j).
G.f.: 1/((1-2*x)*(1-2*x*y)*(1-x^2*y)). - Christian G. Bower, Jan 17 2006

A102841 a(n) = ((9*n^2 + 33*n + 26)*2^n + (-1)^n)/27.

Original entry on oeis.org

1, 5, 19, 61, 179, 493, 1299, 3309, 8211, 19949, 47635, 112109, 260627, 599533, 1366547, 3089901, 6937107, 15476205, 34331155, 75769325, 166451731, 364127725, 793500179, 1723082221, 3729512979, 8048092653, 17319057939
Offset: 0

Views

Author

Creighton Dement, Feb 27 2005

Keywords

Comments

A floretion-generated sequence relating the number of edges and faces in n-dimensional hypercube.
Equals A001787, (1, 4, 12, 32, 80, ...) convolved with A001045, the Jacobsthal sequence. - Gary W. Adamson, May 23 2009
The sum of the sizes of all inversions in compositions of n. - Arnold Knopfmacher, Jan 22 2020

Crossrefs

Programs

  • Magma
    [((9*n^2 + 33*n + 26)*2^n + (-1)^n)/27 : n in [0..40]]; // Wesley Ivan Hurt, Jul 03 2020
  • Mathematica
    Table[(1/27)*((9 n^2 + 33 n + 26) 2^n + (-1)^n), {n, 0, 50}] (* or *) LinearRecurrence[{5,-6,-4,8}, {1,5,19,61}, 50] (* G. C. Greubel, Sep 27 2017 *)

Formula

G.f.: 1/((1+x)*(1-2*x)^3).
a(n+1) - 2*a(n) = A045883(n+2).
a(n) + a(n+1) = A001788(n+2).
a(n) = 5*a(n-1) - 6*a(n-2) - 4*a(n-3) + 8*a(n-4). - Wesley Ivan Hurt, Jul 03 2020

Extensions

Corrected by T. D. Noe, Nov 08 2006

A128971 A130125 * A000012.

Original entry on oeis.org

1, 2, 2, 5, 4, 4, 10, 10, 8, 8, 21, 20, 20, 16, 16, 42, 42, 40, 40, 32, 32, 85, 84, 84, 80, 80, 64, 64, 170, 170, 168, 168, 160, 160, 128
Offset: 0

Views

Author

Gary W. Adamson, May 11 2007

Keywords

Comments

Left column = A000975: (1, 2, 5, 10, 21, 42, ...). Row sums = A102301: (1, 4, 13, 36, 93, ...). A130127 = A000012 * A130125.

Examples

			First few rows of the triangle:
   1;
   2,  2;
   5,  4,  4;
  10, 10,  8,  8;
  21, 20, 20, 16, 16;
  42, 42, 40, 40, 32, 32;
  85, 84, 84, 80, 80, 64, 64;
  ...
		

Crossrefs

Formula

A130125 * A000012 as infinite lower triangular matrices.
Showing 1-4 of 4 results.