cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102327 Primes p such that the largest prime factor of p^5 + 1 is less than p.

Original entry on oeis.org

1753, 2357, 7103, 9749, 13441, 16453, 21467, 22739, 25153, 28409, 29059, 33247, 33347, 36781, 42853, 51427, 57751, 58453, 62347, 65777, 66593, 69119, 72923, 78643, 80407, 83591, 85619, 89909, 91411, 99409, 101209, 101363, 113171, 124337
Offset: 1

Views

Author

Labos Elemer, Jan 05 2005

Keywords

Examples

			p = 1753, 1 + p^5 = 16554252702583994 = 2*41*151*691*877*1361*1621, so the largest prime factor is 1621 < p = 1753.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[15000]], Max[PrimeFactorList[1 + #^5]] < # &] (* Ray Chandler, Jan 08 2005 *)
    Select[Prime[Range[12000]],FactorInteger[#^5+1][[-1,1]]<#&]  (* Harvey P. Dale, Mar 14 2011 *)
  • PARI
    isok(p)= isprime(p) && (vecmax(factor(p^5+1)[,1]) < p); \\ Michel Marcus, Jul 11 2018

Formula

Solutions to {A006530(1 + p^5) < p} where p is a prime.

Extensions

Extended by Ray Chandler, Jan 08 2005