A102327 Primes p such that the largest prime factor of p^5 + 1 is less than p.
1753, 2357, 7103, 9749, 13441, 16453, 21467, 22739, 25153, 28409, 29059, 33247, 33347, 36781, 42853, 51427, 57751, 58453, 62347, 65777, 66593, 69119, 72923, 78643, 80407, 83591, 85619, 89909, 91411, 99409, 101209, 101363, 113171, 124337
Offset: 1
Keywords
Examples
p = 1753, 1 + p^5 = 16554252702583994 = 2*41*151*691*877*1361*1621, so the largest prime factor is 1621 < p = 1753.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime[Range[15000]], Max[PrimeFactorList[1 + #^5]] < # &] (* Ray Chandler, Jan 08 2005 *) Select[Prime[Range[12000]],FactorInteger[#^5+1][[-1,1]]<#&] (* Harvey P. Dale, Mar 14 2011 *)
-
PARI
isok(p)= isprime(p) && (vecmax(factor(p^5+1)[,1]) < p); \\ Michel Marcus, Jul 11 2018
Formula
Solutions to {A006530(1 + p^5) < p} where p is a prime.
Extensions
Extended by Ray Chandler, Jan 08 2005