cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102344 Numbers n such that the Diophantine equation (x+2)^3-x^3=2*n^2 has solutions.

Original entry on oeis.org

2, 7, 97, 1351, 18817, 262087, 3650401, 50843527, 708158977, 9863382151, 137379191137, 1913445293767, 26650854921601, 371198523608647, 5170128475599457, 72010600134783751, 1002978273411373057, 13969685227624439047, 194572614913330773601, 2710046923559006391367
Offset: 1

Views

Author

Richard Choulet, Sep 08 2008

Keywords

Comments

n^2 = 3*(2*x+4)^2+16.
Essentially the same as A011943. - Chris Boyd, Apr 18 2015

Examples

			The first examples are 2^3-0^3=2*2^2 ; 5^3-3^3=2*7^2 ; 57^3-55^3=2*97^2 ; 781^3-779^3=2*1351^2 ; 10865^3-10863^3=2*18817^2
		

Crossrefs

Cf. A011943.

Programs

  • Magma
    I:=[2,7,97]; [n le 3 select I[n] else 14*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 19 2015
    
  • Maple
    2, seq(othopoly[T](n,7),n=1..50); # Robert Israel, Apr 19 2015
  • Mathematica
    a[1]=2; a[2]=7; a[3]=97; a[n_] := a[n] = 14*a[n-1]-a[n-2]; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Dec 17 2013 *)
    LinearRecurrence[{14,-1},{2,7,97},20] (* Harvey P. Dale, Sep 26 2016 *)
  • PARI
    Vec(x*(2-21*x+x^2)/(1-14*x+x^2) + O(x^30)) \\ Michel Marcus, Apr 19 2015

Formula

a(n+2) = 14*a(n+1)-a(n) for n>=2.
G.f.: x*(2-21*x+x^2)/(1-14*x+x^2). a(n)=7*A007655(n+2)-97*A007655(n+1), n>1. - R. J. Mathar, Sep 11 2008

Extensions

More terms from Vincenzo Librandi, Apr 19 2015