A102371 Numbers missing from A102370.
1, 2, 7, 12, 29, 62, 123, 248, 505, 1018, 2047, 4084, 8181, 16374, 32755, 65520, 131057, 262130, 524279, 1048572, 2097133, 4194286, 8388587, 16777192, 33554409, 67108842, 134217711, 268435428, 536870885
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
- David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
Programs
-
Haskell
a102371 n = a102371_list !! (n-1) a102371_list = map (a105027 . toInteger) $ tail a000225_list -- Reinhard Zumkeller, Jul 21 2012
-
Maple
A102371:= proc (n) local t1, l; t1 := -n; for l to n do if `mod`(n-l,2^l) = 0 then t1 := t1+2^l end if end do; t1 end proc;
-
Python
a=1 for n in range(2,66): print(a, end=",") a ^= a+n # Alex Ratushnyak, Apr 21 2012
Formula
a(n) = -n + Sum_{ k >= 1, k == n mod 2^k } 2^k. - N. J. A. Sloane and David Applegate, Mar 22 2005. E.g. a(5) = -5 + 2^1 + 2^5 = 29.
a(2^k + k) -a(k) = 2^(2^k + k) - 2^k, with k>= 1.
a(1)=1, for n>1, a(n) = a(n-1) XOR (a(n-1) + n), where XOR is the bitwise exclusive-or operator. - Alex Ratushnyak, Apr 21 2012
Extensions
More terms from Benoit Cloitre, Mar 20 2005
a(16)-a(22) from Robert G. Wilson v, Mar 21 2005
a(15)-a(29) from David Applegate, Mar 22 2005
Comments