cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102376 a(n) = 4^A000120(n).

Original entry on oeis.org

1, 4, 4, 16, 4, 16, 16, 64, 4, 16, 16, 64, 16, 64, 64, 256, 4, 16, 16, 64, 16, 64, 64, 256, 16, 64, 64, 256, 64, 256, 256, 1024, 4, 16, 16, 64, 16, 64, 64, 256, 16, 64, 64, 256, 64, 256, 256, 1024, 16, 64, 64, 256, 64, 256, 256, 1024, 64, 256, 256, 1024, 256, 1024, 1024
Offset: 0

Views

Author

Paul Barry, Jan 05 2005

Keywords

Comments

Consider a simple cellular automaton, a grid of binary cells c(i,j), where the next state of the grid is calculated by applying the following rule to each cell: c(i,j) = ( c(i+1,j-1) + c(i+1,j+1) + c(i-1,j-1) + c(i-1,j+1) ) mod 2 If we start with a single cell having the value 1 and all the others 0, then the aggregate values of the subsequent states of the grid will be the terms in this sequence. - Andras Erszegi (erszegi.andras(AT)chello.hu), Mar 31 2006. See link for initial states. - N. J. A. Sloane, Feb 12 2015
This is the odd-rule cellular automaton defined by OddRule 033 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). - N. J. A. Sloane, Feb 25 2015
First differences of A116520. - Omar E. Pol, May 05 2010

Examples

			1 + 4*x + 4*x^2 + 16*x^3 + 4*x^4 + 16*x^5 + 16*x^6 + 64*x^7 + 4*x^8 + ...
From _Omar E. Pol_, Jun 07 2009: (Start)
Triangle begins:
  1;
  4;
  4,16;
  4,16,16,64;
  4,16,16,64,16,64,64,256;
  4,16,16,64,16,64,64,256,16,64,64,256,64,256,256,1024;
  4,16,16,64,16,64,64,256,16,64,64,256,64,256,256,1024,16,64,64,256,64,256,...
(End)
		

Crossrefs

For generating functions Prod_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
A151783 is a very similar sequence.
See A160239 for the analogous CA defined by Rule 204 on an 8-celled neighborhood.

Programs

  • Haskell
    a102376 = (4 ^) . a000120  -- Reinhard Zumkeller, Feb 13 2015
    
  • Maple
    seq(4^convert(convert(n,base,2),`+`),n=0..100); # Robert Israel, Apr 30 2017
  • Mathematica
    Table[4^DigitCount[n, 2, 1], {n, 0, 100}] (* Indranil Ghosh, Apr 30 2017 *)
  • PARI
    {a(n) = if( n<0, 0, 4^subst( Pol( binary(n)), x, 1))} /* Michael Somos, May 29 2008 */
    a(n) = 4^hammingweight(n); \\ Michel Marcus, Apr 30 2017
    
  • Python
    def a(n): return 4**bin(n)[2:].count("1") # Indranil Ghosh, Apr 30 2017
    
  • Python
    def A102376(n): return 1<<(n.bit_count()<<1) # Chai Wah Wu, Nov 15 2022

Formula

Formulas due to Paul D. Hanna: (Start)
G.f.: Product_{k>=0} 1 + 4x^(2^k).
a(n) = Product_{k=0..log_2(n)} 4^b(n, k), b(n, k)=coefficient of 2^k in binary expansion of n.
a(n) = Sum_{k=0..n} (C(n, k) mod 2)*3^A000120(n-k). (End)
a(n) = Sum_{k=0..n} (C(n, k) mod 2) * Sum_{j=0..k} (C(k, j) mod 2) * Sum_{i=0..j} (C(j, i) mod 2). - Paul Barry, Apr 01 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = w * (u^2 - 2*u*v + 5*v^2) - 4*v^3. - Michael Somos, May 29 2008
Run length transform of A000302. - N. J. A. Sloane, Feb 23 2015