A102376 a(n) = 4^A000120(n).
1, 4, 4, 16, 4, 16, 16, 64, 4, 16, 16, 64, 16, 64, 64, 256, 4, 16, 16, 64, 16, 64, 64, 256, 16, 64, 64, 256, 64, 256, 256, 1024, 4, 16, 16, 64, 16, 64, 64, 256, 16, 64, 64, 256, 64, 256, 256, 1024, 16, 64, 64, 256, 64, 256, 256, 1024, 64, 256, 256, 1024, 256, 1024, 1024
Offset: 0
Examples
1 + 4*x + 4*x^2 + 16*x^3 + 4*x^4 + 16*x^5 + 16*x^6 + 64*x^7 + 4*x^8 + ... From _Omar E. Pol_, Jun 07 2009: (Start) Triangle begins: 1; 4; 4,16; 4,16,16,64; 4,16,16,64,16,64,64,256; 4,16,16,64,16,64,64,256,16,64,64,256,64,256,256,1024; 4,16,16,64,16,64,64,256,16,64,64,256,64,256,256,1024,16,64,64,256,64,256,... (End)
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- David Applegate, Omar E. Pol, and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- Nathan Epstein, Animation of CA generating A102376
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- N. J. A. Sloane, Illustration of generations 0-15 of the cellular automaton
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Alexander Yu. Vlasov, Modelling reliability of reversible circuits with 2D second-order cellular automata, arXiv:2312.13034 [nlin.CG], 2023. See page 13.
- Index entries for sequences related to cellular automata
Crossrefs
For generating functions Prod_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
A151783 is a very similar sequence.
See A160239 for the analogous CA defined by Rule 204 on an 8-celled neighborhood.
Programs
-
Haskell
a102376 = (4 ^) . a000120 -- Reinhard Zumkeller, Feb 13 2015
-
Maple
seq(4^convert(convert(n,base,2),`+`),n=0..100); # Robert Israel, Apr 30 2017
-
Mathematica
Table[4^DigitCount[n, 2, 1], {n, 0, 100}] (* Indranil Ghosh, Apr 30 2017 *)
-
PARI
{a(n) = if( n<0, 0, 4^subst( Pol( binary(n)), x, 1))} /* Michael Somos, May 29 2008 */ a(n) = 4^hammingweight(n); \\ Michel Marcus, Apr 30 2017
-
Python
def a(n): return 4**bin(n)[2:].count("1") # Indranil Ghosh, Apr 30 2017
-
Python
def A102376(n): return 1<<(n.bit_count()<<1) # Chai Wah Wu, Nov 15 2022
Formula
Formulas due to Paul D. Hanna: (Start)
G.f.: Product_{k>=0} 1 + 4x^(2^k).
a(n) = Product_{k=0..log_2(n)} 4^b(n, k), b(n, k)=coefficient of 2^k in binary expansion of n.
a(n) = Sum_{k=0..n} (C(n, k) mod 2)*3^A000120(n-k). (End)
a(n) = Sum_{k=0..n} (C(n, k) mod 2) * Sum_{j=0..k} (C(k, j) mod 2) * Sum_{i=0..j} (C(j, i) mod 2). - Paul Barry, Apr 01 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = w * (u^2 - 2*u*v + 5*v^2) - 4*v^3. - Michael Somos, May 29 2008
Run length transform of A000302. - N. J. A. Sloane, Feb 23 2015
Comments