cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102407 Number of Dyck paths of semilength n having no ascents of length 1 that start at an odd level.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 72, 206, 606, 1820, 5558, 17206, 53872, 170298, 542778, 1742308, 5627698, 18277698, 59652952, 195541494, 643506310, 2125255036, 7041631854, 23400092142, 77971706848, 260458050034, 872040564850, 2925902656644, 9836517749658, 33130048199466
Offset: 0

Views

Author

Emeric Deutsch, Jan 06 2005

Keywords

Comments

Number of Łukasiewicz paths of length n having no level steps at an odd level. A Łukasiewicz path of length n is a path in the first quadrant from (0,0) to (n,0) using rise steps (1,k) for any positive integer k, level steps (1,0) and fall steps (1,-1) (see R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps). Example: a(2)=2 because we have HH and UD, where U=(1,1), H=(1,0) and D=(1,-1). Column 0 of A102405.
From David Callan, Sep 25 2006: (Start)
a(n) is the number of Dyck n-paths containing no DUDUs. For example, a(3) = 4 counts all five Dyck 3-paths except UDUDUD.
a(n) is the number of Dyck n-paths containing no subpath of the form UUPDD where P is a nonempty Dyck path. For example, a(3) = 4 counts all five Dyck 3-paths except UUUDDD. Deutsch's involution phi on Dyck paths interchanges #DUDUs and #UUPDDs with P a nonempty Dyck path. Phi is defined recursively by phi({})={}, phi(UPDQ)=U phi(Q) D phi(P) where P,Q are Dyck paths.
a(n) is the number of ordered trees on n edges in which each leaf is either the leftmost or rightmost child of its parent. For example, a(3) counts:
..|....|...../\.../\
./ \...|....|.......|
.......|
(End)

Examples

			a(3)=4 because among the five Dyck paths of semilength 3 only UUDUDD has an ascent of length 1 that starts at an odd level; here U=(1,1) and D=(1,-1).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( (1+x-x^2 -Sqrt(1-2*x-5*x^2-2*x^3+x^4))/(2*x) )); // G. C. Greubel, Oct 31 2024
    
  • Maple
    G:=(1+z-z^2-sqrt(1-2*z-5*z^2-2*z^3+z^4))/2/z: Gser:=series(G,z=0,31): 1,seq(coeff(Gser,z^n),n=1..29);
    f:=proc(n) local i,j; add( (1/(n-j))*binomial(n-j,j)* add( binomial(n-2*j,i)*binomial(j+i, n-2*j-i+1), i=0..n-2*j), j=0..n/2 ); end; # N. J. A. Sloane, Dec 06 2007
  • Mathematica
    CoefficientList[Series[(1+x-x^2 -Sqrt[1-2 x -5 x^2 -2 x^3 +x^4])/(2 x), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *)
  • SageMath
    def A102407_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x-x^2 -sqrt(1-2*x-5*x^2-2*x^3+x^4))/(2*x) ).list()
    A102407_list(30) # G. C. Greubel, Oct 31 2024

Formula

G.f.: (1+z-z^2 - sqrt(1-2*z-5*z^2-2*z^3+z^4))/(2*z).
a(n) = Sum_{j=0..floor(n/2)} Sum_{i=0..n-2*j} (1/(n-j))*binomial(n-j,j) * binomial(n-2*j,i)*binomial(j+i, n-2*j-i+1) (from Sapounakis et al.). - N. J. A. Sloane, Dec 06 2007
From Gary W. Adamson, Jul 11 2011: (Start)
Let M = the following infinite square production matrix (where the main diagonal is (1,0,1,0,1,0,...)):
1, 1, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 0, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 0, ...
...
a(n) = top left term in M^n, a(n+1) = sum of top row terms in M^n. Example: top row of M^5 = (26, 19, 16, 7, 3, 1, 0, 0, 0, ...) where 26 = a(5) and 72 = a(6) = (26 + 19 + 16 + 7 + 3 + 1). (End)
(n+1)*a(n) -(2*n-1)*a(n-1) -5*(n-2)*a(n-2) -(2*n-7)*a(n-3) +(n-5)*a(n-4) = 0. - R. J. Mathar, Jan 04 2017