A102413 Triangle read by rows: T(n,k) is the number of k-matchings in the n-sunlet graph (0 <= k <= n).
1, 1, 1, 1, 4, 1, 1, 6, 6, 1, 1, 8, 16, 8, 1, 1, 10, 30, 30, 10, 1, 1, 12, 48, 76, 48, 12, 1, 1, 14, 70, 154, 154, 70, 14, 1, 1, 16, 96, 272, 384, 272, 96, 16, 1, 1, 18, 126, 438, 810, 810, 438, 126, 18, 1, 1, 20, 160, 660, 1520, 2004, 1520, 660, 160, 20, 1, 1, 22, 198, 946, 2618, 4334, 4334, 2618, 946, 198, 22, 1
Offset: 0
Examples
T(3,2) = 6 because in the graph with vertex set {A,B,C,a,b,c} and edge set {AB,AC,BC,Aa,Bb,Cc} we have the following six 2-matchings: {Aa,BC}, {Bb,AC}, {Cc,AB}, {Aa,Bb}, {Aa,Cc} and {Bb,Cc}. The triangle starts: 1; 1, 1; 1, 4, 1; 1, 6, 6, 1; 1, 8, 16, 8, 1; From _Eric W. Weisstein_, Apr 03 2018: (Start) Rows as polynomials: 1 1 + x, 1 + 4*x + x^2, 1 + 6*x + 6*x^2 + x^3, 1 + 8*x + 16*x^2 + 8*x^3 + x^4, 1 + 10*x + 30*x^2 + 30*x^3 + 10*x^4 + x^5, ... (End)
References
- J. L. Gross and J. Yellen, Handbook of Graph Theory, CRC Press, Boca Raton, 2004, p. 894.
- F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969, p. 167.
Links
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- Frédéric Bihan, Francisco Santos, and Pierre-Jean Spaenlehauer, A Polyhedral Method for Sparse Systems with many Positive Solutions, arXiv:1804.05683 [math.CO], 2018.
- A. F. Horadam, Chebyshev and Pell connections, Fib. Quart. 43 (2) (2005) 108-121, table (6.11)
- Eric Weisstein's World of Mathematics, Matching-Generating Polynomial
- Eric Weisstein's World of Mathematics, Sunlet Graph
Programs
-
Haskell
a102413 n k = a102413_tabl !! n !! k a102413_row n = a102413_tabl !! n a102413_tabl = [1] : [1,1] : f [2] [1,1] where f us vs = ws : f vs ws where ws = zipWith3 (((+) .) . (+)) ([0] ++ us ++ [0]) ([0] ++ vs) (vs ++ [0]) -- Reinhard Zumkeller, Apr 15 2014
-
Maple
G:=(1+t*z^2)/(1-(1+t)*z-t*z^2): Gser:=simplify(series(G,z=0,38)): P[0]:=1: for n from 1 to 11 do P[n]:=coeff(Gser,z^n) od:for n from 0 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
-
Mathematica
CoefficientList[Table[2^-n ((1 + x - Sqrt[1 + x (6 + x)])^n + (1 + x + Sqrt[1 + x (6 + x)])^n), {n, 10}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *) LinearRecurrence[{1 + x, x}, {1, 1 + x, 1 + 4 x + x^2}, 10] // Flatten (* Eric W. Weisstein, Apr 03 2018 *) Join[{1}, CoefficientList[CoefficientList[Series[(-1 - x - 2 x z)/(-1 + z + x z + x z^2), {z, 0, 10}], z], x]] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
Formula
G.f.: G(t,z) = (1 + t*z^2) / (1 - (1+t)*z - t*z^2).
For n > 2: T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-1), 0 < k < n. - Reinhard Zumkeller, Apr 15 2014 (corrected by Andrew Woods, Dec 08 2014)
From Peter Bala, Jun 25 2015: (Start)
The n-th row polynomial R(n, t) = [z^n] F(z, t)^n, where F(z, t) = 1/2*( 1 + (1 + t)*z + sqrt(1 + 2*(1 + t)*z + (1 + 6*t + t^2)*z^2) ).
exp( Sum_{n >= 1} R(n, t)*z^n/n ) = 1 + (1 + t)*z + (1 + 3*t + t^2)*z^2 + (1 + 5*t + 5*t^2 + t^3)*z^3 + ... is the o.g.f for A008288 read as a triangular array. (End)
From Peter Bala, Aug 01 2024: (Start)
T(n, k) = 1 if n = 0 or k = n, else for 1 <= k <= n-1, T(n, k) = Sum_{j = 0..min(n-k, k)} (2^j)*(binomial(n-k, j)*binomial(k, j) + binomial(n-k-1, j)*binomial(k-1, j)).
Let S(x) = (1 - x - (1 - 6*x + x^2)^(1/2))/(2*x) denote the g.f. of the sequence of large Schröder numbers A006318. The signed n-th row polynomial R(n, -x) = 1/S(x)^n + (x*S(x))^n. (End)
Extensions
Row 0 in polynomials and Mathematica programs added by Georg Fischer, Apr 01 2019
Comments