cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102413 Triangle read by rows: T(n,k) is the number of k-matchings in the n-sunlet graph (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 6, 6, 1, 1, 8, 16, 8, 1, 1, 10, 30, 30, 10, 1, 1, 12, 48, 76, 48, 12, 1, 1, 14, 70, 154, 154, 70, 14, 1, 1, 16, 96, 272, 384, 272, 96, 16, 1, 1, 18, 126, 438, 810, 810, 438, 126, 18, 1, 1, 20, 160, 660, 1520, 2004, 1520, 660, 160, 20, 1, 1, 22, 198, 946, 2618, 4334, 4334, 2618, 946, 198, 22, 1
Offset: 0

Views

Author

Emeric Deutsch, Jan 07 2005

Keywords

Comments

The n-sunlet graph is the corona C'(n) of the cycle graph C(n) and the complete graph K(1); in other words, C'(n) is the graph constructed from C(n) to which for each vertex v a new vertex v' and the edge vv' is added.
Row n contains n+1 terms. Row sums yield A099425. T(n,k) = T(n,n-k).
For n > 2: same recurrence as A008288 and A128966. - Reinhard Zumkeller, Apr 15 2014

Examples

			T(3,2) = 6 because in the graph with vertex set {A,B,C,a,b,c} and edge set {AB,AC,BC,Aa,Bb,Cc} we have the following six 2-matchings: {Aa,BC}, {Bb,AC}, {Cc,AB}, {Aa,Bb}, {Aa,Cc} and {Bb,Cc}.
The triangle starts:
  1;
  1, 1;
  1, 4,  1;
  1, 6,  6, 1;
  1, 8, 16, 8, 1;
From _Eric W. Weisstein_, Apr 03 2018: (Start)
Rows as polynomials:
  1
  1 +    x,
  1 +  4*x +    x^2,
  1 +  6*x +  6*x^2 +    x^3,
  1 +  8*x + 16*x^2 +  8*x^3 +    x^4,
  1 + 10*x + 30*x^2 + 30*x^3 + 10*x^4 + x^5,
  ... (End)
		

References

  • J. L. Gross and J. Yellen, Handbook of Graph Theory, CRC Press, Boca Raton, 2004, p. 894.
  • F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969, p. 167.

Crossrefs

Cf. A002203 or A099425 (row sums), A006318, A008288.
Cf. A241023 (central terms).

Programs

  • Haskell
    a102413 n k = a102413_tabl !! n !! k
    a102413_row n = a102413_tabl !! n
    a102413_tabl = [1] : [1,1] : f [2] [1,1] where
       f us vs = ws : f vs ws where
                 ws = zipWith3 (((+) .) . (+))
                      ([0] ++ us ++ [0]) ([0] ++ vs) (vs ++ [0])
    -- Reinhard Zumkeller, Apr 15 2014
  • Maple
    G:=(1+t*z^2)/(1-(1+t)*z-t*z^2): Gser:=simplify(series(G,z=0,38)): P[0]:=1: for n from 1 to 11 do P[n]:=coeff(Gser,z^n) od:for n from 0 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
  • Mathematica
    CoefficientList[Table[2^-n ((1 + x - Sqrt[1 + x (6 + x)])^n + (1 + x + Sqrt[1 + x (6 + x)])^n), {n, 10}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
    LinearRecurrence[{1 + x, x}, {1, 1 + x, 1 + 4 x + x^2}, 10] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
    Join[{1}, CoefficientList[CoefficientList[Series[(-1 - x - 2 x z)/(-1 + z + x z + x z^2), {z, 0, 10}], z], x]] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)

Formula

G.f.: G(t,z) = (1 + t*z^2) / (1 - (1+t)*z - t*z^2).
For n > 2: T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-1), 0 < k < n. - Reinhard Zumkeller, Apr 15 2014 (corrected by Andrew Woods, Dec 08 2014)
From Peter Bala, Jun 25 2015: (Start)
The n-th row polynomial R(n, t) = [z^n] F(z, t)^n, where F(z, t) = 1/2*( 1 + (1 + t)*z + sqrt(1 + 2*(1 + t)*z + (1 + 6*t + t^2)*z^2) ).
exp( Sum_{n >= 1} R(n, t)*z^n/n ) = 1 + (1 + t)*z + (1 + 3*t + t^2)*z^2 + (1 + 5*t + 5*t^2 + t^3)*z^3 + ... is the o.g.f for A008288 read as a triangular array. (End)
From Peter Bala, Aug 01 2024: (Start)
T(n, k) = A008288(n-k, k) + A008288(n-k-1, k-1) (Bihan et al., Proposition 6.6).
T(n, k) = 1 if n = 0 or k = n, else for 1 <= k <= n-1, T(n, k) = Sum_{j = 0..min(n-k, k)} (2^j)*(binomial(n-k, j)*binomial(k, j) + binomial(n-k-1, j)*binomial(k-1, j)).
Let S(x) = (1 - x - (1 - 6*x + x^2)^(1/2))/(2*x) denote the g.f. of the sequence of large Schröder numbers A006318. The signed n-th row polynomial R(n, -x) = 1/S(x)^n + (x*S(x))^n. (End)

Extensions

Row 0 in polynomials and Mathematica programs added by Georg Fischer, Apr 01 2019