A102425 Let pi be an unrestricted partition of n with the summands written as binary numbers; a(n) is the number of such partitions with an even number of binary ones.
1, 0, 1, 2, 2, 4, 6, 6, 12, 16, 20, 28, 40, 48, 69, 91, 111, 150, 197, 238, 319, 398, 493, 634, 792, 968, 1226, 1510, 1846, 2293, 2811, 3395, 4197, 5079, 6126, 7469, 8993, 10781, 13051, 15593, 18627, 22333, 26598, 31571, 37655, 44569, 52702, 62462
Offset: 0
Keywords
Examples
a(5) = 4 because there are 4 partitions of 5 whose binary representations have an even number of binary ones, namely 101, 100+1, 11+1+1, 10+1+1+1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
p:= proc(n) option remember; local c, m; c:= 0; m:= n; while m>0 do c:= c +irem(m, 2, 'm') od; c end: b:= proc(n,i,t) option remember; if n<0 then 0 elif n=0 then 1-t elif i=0 then 0 else b(n, i-1, t) +b(n-i, i, irem(p(i)+t, 2)) fi end: a:= n-> b(n, n, 0): seq(a(n), n=0..60); # Alois P. Heinz, Feb 21 2011
-
Mathematica
Table[Length[Select[Map[Apply[Join,#]&,Map[IntegerDigits[#,2]&,Partitions[n]]],EvenQ[Count[#,1]]&]],{n,0,40}] (* Geoffrey Critzer, Sep 28 2013 *)
-
PARI
seq(n)={apply(t->polcoeff(lift(t), 0), Vec(prod(i=1, n, 1/(1 - x^i*Mod( y^hammingweight(i), y^2-1 )) + O(x*x^n))))} \\ Andrew Howroyd, Jul 20 2018