cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102425 Let pi be an unrestricted partition of n with the summands written as binary numbers; a(n) is the number of such partitions with an even number of binary ones.

Original entry on oeis.org

1, 0, 1, 2, 2, 4, 6, 6, 12, 16, 20, 28, 40, 48, 69, 91, 111, 150, 197, 238, 319, 398, 493, 634, 792, 968, 1226, 1510, 1846, 2293, 2811, 3395, 4197, 5079, 6126, 7469, 8993, 10781, 13051, 15593, 18627, 22333, 26598, 31571, 37655, 44569, 52702, 62462
Offset: 0

Views

Author

David S. Newman, Feb 23 2005

Keywords

Examples

			a(5) = 4 because there are 4 partitions of 5 whose binary representations have an even number of binary ones, namely 101, 100+1, 11+1+1, 10+1+1+1.
		

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; local c, m;
          c:= 0; m:= n;
          while m>0 do c:= c +irem(m, 2, 'm') od;
          c
        end:
    b:= proc(n,i,t) option remember;
          if n<0 then 0
        elif n=0 then 1-t
        elif i=0 then 0
        else b(n, i-1, t) +b(n-i, i, irem(p(i)+t, 2))
          fi
        end:
    a:= n-> b(n, n, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 21 2011
  • Mathematica
    Table[Length[Select[Map[Apply[Join,#]&,Map[IntegerDigits[#,2]&,Partitions[n]]],EvenQ[Count[#,1]]&]],{n,0,40}] (* Geoffrey Critzer, Sep 28 2013 *)
  • PARI
    seq(n)={apply(t->polcoeff(lift(t), 0), Vec(prod(i=1, n, 1/(1 - x^i*Mod( y^hammingweight(i), y^2-1 )) + O(x*x^n))))} \\ Andrew Howroyd, Jul 20 2018