A102466 Numbers such that the number of divisors is the sum of numbers of prime factors with and without repetitions.
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a102466 n = a102466_list !! (n-1) a102466_list = [x | x <- [1..], a000005 x == a001221 x + a001222 x] -- Reinhard Zumkeller, Dec 14 2012
-
Maple
with(numtheory): q:= n-> is(tau(n)=bigomega(n)+nops(factorset(n))): select(q, [$1..200])[]; # Alois P. Heinz, Jul 14 2023
-
Mathematica
Select[Range[110],DivisorSigma[0,#]==PrimeOmega[#]+PrimeNu[#]&] (* Harvey P. Dale, Mar 09 2016 *)
-
PARI
is(n)=my(f=factor(n)[,2]); #f==1 || f==[1,1]~ \\ Charles R Greathouse IV, Oct 19 2015
-
Sage
def is_A102466(n) : return bool(sloane.A001221(n) == 1 or sloane.A001222(n) == 2) def A102466_list(n) : return [k for k in (1..n) if is_A102466(k)] A102466_list(109) # Peter Luschny, Feb 08 2012
Comments