cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102466 Numbers such that the number of divisors is the sum of numbers of prime factors with and without repetitions.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 09 2005

Keywords

Comments

A000005(a(n)) = A001221(a(n)) + A001222(a(n)); prime powers are a subsequence (A000961); complement of A102467; not the same as A085156.
Equals { n | omega(n)=1 or Omega(n)=2 }, that is, these are exactly the prime powers (>1) and semiprimes. - M. F. Hasler, Jan 14 2008
For n > 1: A086971(a(n)) <= 1. - Reinhard Zumkeller, Dec 14 2012

Crossrefs

Programs

  • Haskell
    a102466 n = a102466_list !! (n-1)
    a102466_list = [x | x <- [1..], a000005 x == a001221 x + a001222 x]
    -- Reinhard Zumkeller, Dec 14 2012
    
  • Maple
    with(numtheory):
    q:= n-> is(tau(n)=bigomega(n)+nops(factorset(n))):
    select(q, [$1..200])[];  # Alois P. Heinz, Jul 14 2023
  • Mathematica
    Select[Range[110],DivisorSigma[0,#]==PrimeOmega[#]+PrimeNu[#]&] (* Harvey P. Dale, Mar 09 2016 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); #f==1 || f==[1,1]~ \\ Charles R Greathouse IV, Oct 19 2015
  • Sage
    def is_A102466(n) :
        return bool(sloane.A001221(n) == 1 or sloane.A001222(n) == 2)
    def A102466_list(n) :
        return [k for k in (1..n) if is_A102466(k)]
    A102466_list(109)  # Peter Luschny, Feb 08 2012