cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102547 Triangle read by rows, formed from antidiagonals of the antidiagonals (A011973) of Pascal's triangle (A007318).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 5, 3, 1, 6, 6, 1, 7, 10, 1, 1, 8, 15, 4, 1, 9, 21, 10, 1, 10, 28, 20, 1, 1, 11, 36, 35, 5, 1, 12, 45, 56, 15, 1, 13, 55, 84, 35, 1, 1, 14, 66, 120, 70, 6, 1, 15, 78, 165, 126, 21, 1, 16, 91, 220, 210, 56, 1, 1, 17, 105, 286, 330, 126, 7, 1, 18, 120
Offset: 0

Views

Author

Gerald McGarvey, Feb 24 2005

Keywords

Comments

Row sums are A000930, antidiagonal sums are A003269.
Row n contains 1+floor(n/3) terms.
T(n,k) is the number of compositions of n+3 with k+1 parts, all at least 3. Example: T(9,2) = binomial(5,2) = 10 because we have 336, 363, 633, 345, 354, 435, 453, 534, 543, and 444. - Emeric Deutsch, Aug 15 2010
T(n+2,k) is the number of k-subsets of {1..n} with values at least 3 apart. For example, T(7,2) = 3 corresponds to the subsets {1,4},{1,5},{2,5} of {1..5}. - Enrique Navarrete, Dec 19 2021

Examples

			Triangle begins:
  1;
  1;
  1;
  1, 1;
  1, 2;
  1, 3;
  1, 4, 1;
  1, 5, 3;
		

Crossrefs

Cf. A007318, A011973, A003269, A000930 (row sums), A349862 (max row values).

Programs

  • Magma
    /* As triangle */ [[Binomial(n-2*k,k): k in [0..n div 3]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 23 2019
  • Maple
    for n from 0 to 20 do seq(binomial(n-2*k, k), k = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form. - Emeric Deutsch, Aug 15 2010
  • Mathematica
    nn=20;Map[Select[#,#>0&]&,CoefficientList[Series[1/(1-x)/(1-y x^3/(1-x)),{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Jun 25 2014 *)

Formula

T(n,k) = binomial(n-2k,k) (0 <= k <= n/3). - Emeric Deutsch, Aug 15 2010
G.f.: 1/(1 - x)/(1 - y*x^3/(1 - x)) = 1/(1 - x - y*x^3). - Geoffrey Critzer, Jun 25 2014