A102547 Triangle read by rows, formed from antidiagonals of the antidiagonals (A011973) of Pascal's triangle (A007318).
1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 5, 3, 1, 6, 6, 1, 7, 10, 1, 1, 8, 15, 4, 1, 9, 21, 10, 1, 10, 28, 20, 1, 1, 11, 36, 35, 5, 1, 12, 45, 56, 15, 1, 13, 55, 84, 35, 1, 1, 14, 66, 120, 70, 6, 1, 15, 78, 165, 126, 21, 1, 16, 91, 220, 210, 56, 1, 1, 17, 105, 286, 330, 126, 7, 1, 18, 120
Offset: 0
Examples
Triangle begins: 1; 1; 1; 1, 1; 1, 2; 1, 3; 1, 4, 1; 1, 5, 3;
Links
- Alois P. Heinz, Rows n = 0..250, flattened
- Michael A. Allen, Connections between Combinations Without Specified Separations and Strongly Restricted Permutations, Compositions, and Bit Strings, arXiv:2409.00624 [math.CO], 2024. See p. 13.
- Richard J. Mathar, Tiling n x m rectangles with 1 X 1 and s X s squares, arXiv:1609.03964 [math.CO], 2016, Section 4.2.
- Richard J. Mathar, Bivariate Generating Functions Enumerating Non-Bonding Dominoes on Rectangular Boards, arXiv:2404.18806 [math.CO], 2024. See p. 7.
- Michel Rigo, Manon Stipulanti, and Markus A. Whiteland, Gapped Binomial Complexities in Sequences, Univ. Liège (Belgium 2023).
Programs
-
Magma
/* As triangle */ [[Binomial(n-2*k,k): k in [0..n div 3]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 23 2019
-
Maple
for n from 0 to 20 do seq(binomial(n-2*k, k), k = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form. - Emeric Deutsch, Aug 15 2010
-
Mathematica
nn=20;Map[Select[#,#>0&]&,CoefficientList[Series[1/(1-x)/(1-y x^3/(1-x)),{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Jun 25 2014 *)
Formula
T(n,k) = binomial(n-2k,k) (0 <= k <= n/3). - Emeric Deutsch, Aug 15 2010
G.f.: 1/(1 - x)/(1 - y*x^3/(1 - x)) = 1/(1 - x - y*x^3). - Geoffrey Critzer, Jun 25 2014
Comments