cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102556 Numerator of the probability that 2n-dimensional Gaussian random triangle has an obtuse angle.

Original entry on oeis.org

3, 15, 159, 867, 19239, 107985, 1222563, 6965835, 319153335, 1835486085, 21185534577, 122622340677, 2846090375067, 16550504577861, 192854402926251, 1125503935556763, 105252693980913879, 615999836125850637, 7219077361263238917, 42347454581722163361, 994637701798929524937
Offset: 1

Views

Author

Eric W. Weisstein, Jan 14 2005

Keywords

Examples

			p(n) = {3/4, 15/32, 159/512, 867/4096, 19239/131072, 107985/1048576, ... }_{n >= 1}.
		

Crossrefs

Cf. A102557 (denominators), A102558, A102559.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50);
    A102556:= func< n | Numerator( Coefficient(R!( 3*x*(1-1/Sqrt(4-3*x))/(2-2*x) ), n) ) >;
    [A102556(n): n in [1..30]]; // G. C. Greubel, Jan 31 2025
    
  • Maple
    p:= gfun:-rectoproc({(-6*n-3)*v(n)+(14*n+11)*v(n+1)+(-8*n-8)*v(n+2), v(0) = 0, v(1) = 3/4, v(2) = 15/32},v(n),remember):
    seq(numer(p(n)),n=1..50); # Robert Israel, Sep 29 2016
  • Mathematica
    a[n_] := (3^n/4^(2n-1)) Binomial[2n-1, n] Hypergeometric2F1[1, 1-n, 1+n, -1/3] // Numerator; Array[a, 20] (* Jean-François Alcover, Mar 22 2019 *)
  • PARI
    a(n) = numerator(sum(k=n, 2*n-1, binomial(2*n-1,k)*3^(2*n-k)/4^(2*n-1))); \\ Michel Marcus, Mar 23 2019
    
  • SageMath
    def A102556(n): return ( 3*(1-1/sqrt(4-3*x))/(2*(1-x)) ).series(x,n+1).list()[n].numerator()
    print([A102556(n) for n in range(31)]) # G. C. Greubel, Jan 31 2025

Formula

From Robert Israel, Sep 29 2016: (Start)
a(n) is the numerator of p(n) = Sum_{k=n..2*n-1} binomial(2*n-1,k)*3^(2*n-k)/4^(2*n-1).
8(n+1)*p(n+2) = (14*n+11)*p(n+1) - 3*(2*n+1)*p(n), for n >= 1.
G.f. of p(n): 3*x*(1 - 1/sqrt(4-3*x))/(2-2*x). (End)