cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102557 Denominator of the probability that 2n-dimensional Gaussian random triangle has an obtuse angle.

Original entry on oeis.org

4, 32, 512, 4096, 131072, 1048576, 16777216, 134217728, 8589934592, 68719476736, 1099511627776, 8796093022208, 281474976710656, 2251799813685248, 36028797018963968, 288230376151711744, 36893488147419103232, 295147905179352825856, 4722366482869645213696, 37778931862957161709568
Offset: 1

Views

Author

Eric W. Weisstein, Jan 14 2005

Keywords

Comments

Presumably this is the same as A093581? - Andrew S. Plewe, Apr 18 2007
a(n) equals A093581(n) for n <= 55000. - G. C. Greubel, Oct 20 2024

Examples

			3/4, 15/32, 159/512, 867/4096, 19239/131072, 107985/1048576, ...
		

Crossrefs

Programs

  • Magma
    A102557:= func< n | Power(2, 4*n-2-(&+Intseq(2*(n-1), 2))) >;
    [A102557(n): n in [1..30]]; // G. C. Greubel, Oct 20 2024
    
  • Maple
    p:= gfun:-rectoproc({(-6*n-3)*v(n)+(14*n+11)*v(n+1)+(-8*n-8)*v(n+2), v(0) = 0, v(1) = 3/4, v(2) = 15/32},v(n),remember):
    seq(denom(p(n)),n=1..50); # Robert Israel, Sep 29 2016
    # Alternative, assuming offset 0:
    a := n -> numer((4^(2*n+1)*n!^2)/((2*n+3)*(2*n)!)): # Peter Luschny, Dec 05 2024
  • Mathematica
    a[n_]:= (3^n/4^(2n-1)) Binomial[2n-1, n] Hypergeometric2F1[1, 1-n, 1+n, -1/3] // Denominator; Array[a, 20] (* Jean-François Alcover, Mar 22 2019 *)
  • PARI
    a(n) = denominator(sum(k=n, 2*n-1, binomial(2*n-1,k)*3^(2*n-k)/4^(2*n-1))); \\ Michel Marcus, Mar 23 2019
    
  • SageMath
    def A102557(n): return pow(2, 4*n-2 - sum((2*n-2).digits(2)))
    [A102557(n) for n in range(1,31)] # G. C. Greubel, Oct 20 2024

Formula

From Robert Israel, Sep 29 2016: (Start)
a(n) is the denominator of p(n) = Sum_{k=n..2n-1} binomial(2n-1,k) 3^(2n-k)/4^(2n-1).
8*(n+1)*p(n+2) = (14*n+11)*p(n+1) - 3*(2*n+1)*p(n), for n >= 1, with p(0) = 0, p(1) = 3/4, and p(2) = 15/32.
G.f. of p(n): 3*x*(1 - 1/sqrt(4-3*x))/(2*(1-x)). (End)
Assuming offset 0: a(n) = numerator((4^(2*n+1)*n!^2)/((2*n+3)*(2*n)!)). - Peter Luschny, Dec 05 2024