cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A102893 Number of noncrossing trees with n edges and having degree of the root at least 2.

Original entry on oeis.org

1, 0, 1, 5, 25, 130, 700, 3876, 21945, 126500, 740025, 4382625, 26225628, 158331880, 963250600, 5899491640, 36345082425, 225082957512, 1400431689475, 8749779798375, 54874635255825, 345329274848250, 2179969531405680
Offset: 0

Views

Author

Emeric Deutsch, Jan 16 2005

Keywords

Comments

[a(n+2)]= [1,5,25,130,700,...] is the self-convolution 5th power of A001764. - Philippe Deléham, Nov 11 2009
a(n) is the number of dissections of a convex (2n+2)-sided polygon by nonintersecting diagonals into quadrilaterals such that at least one of the dividing diagonals passes through a chosen vertex. - Muhammed Sefa Saydam, Jan 24 2025

Examples

			a(2)=1 because among the noncrossing trees with 2 edges, namely /_, _\ and /\, only the last one has root degree >1.
		

Crossrefs

Column k=0 of A102892 and column k=0 of A102593.

Programs

  • Maple
    a:=proc(n) if n=0 then 1 else 5*binomial(3*n-1,n-2)/(3*n-1) fi end:
    seq(a(n), n=0..25);
    # Recurrence:
    a := proc(n) option remember; if n < 3 then return [1,0,1][n+1] fi;
    (27*n^3 - 81*n^2 + 78*n - 24)*a(n - 1)/(4*n^3 - 6*n^2 - 4*n) end:
    seq(a(n), n=0..23); # Peter Luschny, Aug 08 2020
    alias(PS=ListTools:-PartialSums): A102893List := proc(m) local A, P, n;
    A := [1,0]; P := [1]; for n from 1 to m - 2 do P := PS(PS([op(P), P[-1]]));
    A := [op(A), P[-2]] od; A end: A102893List(23); # Peter Luschny, Mar 26 2022
  • Mathematica
    a[0] = 1; a[n_] := 5*Binomial[3n-1, n-2]/(3n-1); Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Mar 01 2018 *)
  • PARI
    a(n) = if(n<=1, n==0, 5*binomial(3*n-1, n-2)/(3*n-1)); \\ Andrew Howroyd, Nov 17 2017

Formula

a(0)=1; a(n) = 5*binomial(3n-1, n-2)/(3n-1) if n > 0.
G.f.: g - z*g^2, where g = 1 + z*g^3 is the g.f. of the ternary numbers (A001764).
a(n) = A001764(n) - A006013(n-1).
D-finite with recurrence 2*n*(2*n+1)*(n-2)*a(n) -3*(n-1)*(3*n-4)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Feb 16 2018
a(n) ~ (5*3^(3*n + 1/2))/(36*4^n*n^(3/2)*sqrt(Pi)). - Peter Luschny, Aug 08 2020

A102594 Number of noncrossing trees with n edges in which no border edges emanate from the root.

Original entry on oeis.org

1, 0, 0, 1, 7, 42, 245, 1428, 8379, 49588, 296010, 1781325, 10798788, 65900296, 404565252, 2496994136, 15486165555, 96464124648, 603262881620, 3786268349115, 23842082904255, 150586208376450, 953736669989985
Offset: 0

Views

Author

Emeric Deutsch, Jan 22 2005

Keywords

Examples

			a(2)=0 because in all the three noncrossing trees with 2 edges, namely, /_, /\ and _\, the root (=the top vertex) is incident with at least one border edge.
		

Crossrefs

Column k=0 of A102593.
Cf. A001764.

Programs

  • Maple
    a:=n->7/3*(n-1)*(n-2)*binomial(3*n,n)/(3*n-1)/(2*n+1)/(3*n-2): 1,seq(a(n), n=1..25);
  • Mathematica
    a[0] = a[3] = 1; a[n_] := 7*Binomial[3n-3, 2n+1]/(n-3); Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jan 21 2013 *)
  • PARI
    a(n) = if (n==0, 1, 7/3*(n-1)*(n-2)*binomial(3*n, n)/(3*n-1)/(2*n+1)/(3*n-2)); \\ Michel Marcus, Oct 26 2015
    
  • PARI
    Vec((g->g*(1+x-2*x*g))(1+serreverse(x/(1+x)^3 + O(x^30)))) \\ Andrew Howroyd, Nov 17 2017

Formula

a(n) = 7/3*(n-1)*(n-2)*binomial(3*n, n)/(3*n-1)/(2*n+1)/(3*n-2) for n > 0; a(0)=1.
G.f.: g*(1+z-2*z*g), where g = 1+z*g^3 is the g.f. of the ternary numbers (A001764).
From Karol A. Penson, Mar 12 2018: (Start)
a(n+3) = 7*binomial(3*n+6, 2*n+6)/(2*n+7).
a(n+3) is the n-th moment of a signed function v(x) on (0,27/4), i.e., in Maple notation, a(n+3) = int(x^n*v(x) , x = 0..27/4), n = 0,1..., where v(x) = -sqrt(3)*x^(4/3)*(7*x^(1/3)*hypergeom([-5/6, -1/3, 8/3], [2/3, 4/3], 4*x/27))-3*hypergeom([-7/6, -2/3, 7/3], [1/3, 2/3], 4*x/27)))/(6*Pi). The function v(x) vanishes at x = 0 and x = 27/4. In addition it has one zero in the interval between x = 0 and x = 27/4. (End)
D-finite with recurrence 2*n*(2*n+1)*(n-3)*a(n) -3*(3*n-5)*(n-1)*(3*n-4)*a(n-1)=0. - R. J. Mathar, Jul 26 2022
Showing 1-2 of 2 results.