A110616
A convolution triangle of numbers based on A001764.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 12, 7, 3, 1, 55, 30, 12, 4, 1, 273, 143, 55, 18, 5, 1, 1428, 728, 273, 88, 25, 6, 1, 7752, 3876, 1428, 455, 130, 33, 7, 1, 43263, 21318, 7752, 2448, 700, 182, 42, 8, 1, 246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1
Offset: 0
Triangle begins:
1;
1, 1;
3, 2, 1;
12, 7, 3, 1;
55, 30, 12, 4, 1;
273, 143, 55, 18, 5, 1;
1428, 728, 273, 88, 25, 6, 1;
7752, 3876, 1428, 455, 130, 33, 7, 1;
43263, 21318, 7752, 2448, 700, 182, 42, 8, 1;
246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1;
...
From _Peter Bala_, Feb 04 2025: (Start)
The transposed array factorizes as an infinite product of upper triangular arrays:
/ 1 \^T /1 \^T /1 \^T / 1 \^T
| 1 1 | | 1 1 | | 0 1 | | 0 1 |
| 3 2 1 | = | 2 1 1 | | 0 1 1 | | 0 0 1 | ...
|12 7 3 1 | | 5 2 1 1 | | 0 2 1 1 | | 0 0 1 1 |
|55 30 12 4 1| |14 5 2 1 1| | 0 5 2 1 1 | | 0 0 2 1 1 |
|... | |... | |... | |... |
where T denotes transposition and [1, 1, 2, 5, 14,...] is the sequence of Catalan numbers A000108. (End)
- Peter Bala, Factorisations of some Riordan arrays as infinite products
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 27, 29.
- Paul Barry, d-orthogonal polynomials, Fuss-Catalan matrices and lattice paths, arXiv:2505.16718 [math.CO], 2025. See p. 21.
- Naiomi Cameron and J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1.
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
- Sheng-Liang Yang and L. J. Wang, Taylor expansions for the m-Catalan numbers, Australasian Journal of Combinatorics, Volume 64(3) (2016), Pages 420-431.
-
Table[(k + 1) Binomial[3 n - 2 k, 2 n - k]/(2 n - k + 1), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jun 28 2017 *)
-
T(n,k):=((k+1)*binomial(3*n-2*k,2*n-k))/(2*n-k+1); /* Vladimir Kruchinin, Nov 01 2011 */
A143603
Triangle, read by rows, such that the g.f. of column k = G(x)^(2k+1) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764 (ternary trees).
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 12, 12, 5, 1, 55, 55, 25, 7, 1, 273, 273, 130, 42, 9, 1, 1428, 1428, 700, 245, 63, 11, 1, 7752, 7752, 3876, 1428, 408, 88, 13, 1, 43263, 43263, 21945, 8379, 2565, 627, 117, 15, 1, 246675, 246675, 126500, 49588, 15939, 4235, 910, 150, 17, 1
Offset: 1
Triangle begins:
1;
1, 1;
3, 3, 1;
12, 12, 5, 1;
55, 55, 25, 7, 1;
273, 273, 130, 42, 9, 1;
1428, 1428, 700, 245, 63, 11, 1;
7752, 7752, 3876, 1428, 408, 88, 13, 1; ...
where g.f. of column k = G(x)^(2k+1) where G(x) = 1 + x*G(x)^3.
Matrix inverse begins:
1;
-1, 1;
0, -3, 1;
0, 3, -5, 1;
0, -1, 10, -7, 1;
0, 0, -10, 21, -9, 1;
0, 0, 5, -35, 36, -11, 1;
0, 0, -1, 35, -84, 55, -13, 1; ...
where g.f. of column k = (1-x)^(2k+1) for k>=0.
From _Peter Bala_, Aug 07 2014: (Start)
Matrix factorization as (1 + A110616)*A033184 begins
/1 \/ 1 \ / 1 \
|0 1 || 1 1 | | 1 1 |
|0 1 1 || 2 2 1 | = | 3 3 1 |
|0 3 2 1 || 5 5 3 1 | |12 12 5 1 |
|0 12 7 3 1 ||14 14 9 4 1 | |55 55 25 7 1 |
(End)
A230547
a(n) = 3*binomial(3*n+9, n)/(n+3).
Original entry on oeis.org
1, 9, 63, 408, 2565, 15939, 98670, 610740, 3786588, 23535820, 146710476, 917263152, 5752004349, 36174046743, 228124619100, 1442387942520, 9142452842985, 58083251802345, 369816259792035, 2359448984037600
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
-
[9*Binomial(3*n+9, n)/(3*n+9): n in [0..30]];
-
Table[9 Binomial[3 n + 9, n]/(3 n + 9), {n, 0, 30}]
-
a(n) = 9*binomial(3*n+9,n)/(3*n+9);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/9))^9+x*O(x^n)); polcoeff(B, n)}
A233657
a(n) = 10 * binomial(3*n+10,n)/(3*n+10).
Original entry on oeis.org
1, 10, 75, 510, 3325, 21252, 134550, 848250, 5340060, 33622600, 211915132, 1337675430, 8458829925, 53591180360, 340185835500, 2163581913780, 13786238414025, 88004926973250, 562763873596575, 3604713725613000, 23126371951808268, 148594788106641360
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- David Bevan, Robert Brignall, Andrew Elvey Price and Jay Pantone, A structural characterisation of Av(1324) and new bounds on its growth rate, arXiv preprint arXiv:1711.10325 [math.CO], 2017-2019.
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955 (2010).
- Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
-
[10*Binomial(3*n+10, n)/(3*n+10): n in [0..30]];
-
A233657:=n->10*binomial(3*n+10,n)/(3*n+10): seq(A233657(n), n=0..20); # Wesley Ivan Hurt, Oct 10 2014
-
Table[10 Binomial[3 n + 10, n]/(3 n + 10), {n, 0, 30}]
-
a(n) = 10*binomial(3*n+10,n)/(3*n+10);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/10))^10+x*O(x^n)); polcoeff(B, n)}
A355172
The Fuss-Catalan triangle of order 2, read by rows. Related to ternary trees.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 5, 12, 0, 1, 7, 25, 55, 0, 1, 9, 42, 130, 273, 0, 1, 11, 63, 245, 700, 1428, 0, 1, 13, 88, 408, 1428, 3876, 7752, 0, 1, 15, 117, 627, 2565, 8379, 21945, 43263, 0, 1, 17, 150, 910, 4235, 15939, 49588, 126500, 246675
Offset: 0
Table T(n, k) begins:
[0] [1]
[1] [0, 1]
[2] [0, 1, 3]
[3] [0, 1, 5, 12]
[4] [0, 1, 7, 25, 55]
[5] [0, 1, 9, 42, 130, 273]
[6] [0, 1, 11, 63, 245, 700, 1428]
[7] [0, 1, 13, 88, 408, 1428, 3876, 7752]
Seen as an array reading the diagonals starting from the main diagonal:
[0] 1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675, ... A001764
[1] 0, 1, 5, 25, 130, 700, 3876, 21945, 126500, 740025, ... A102893
[2] 0, 1, 7, 42, 245, 1428, 8379, 49588, 296010, 1781325, ... A102594
[3] 0, 1, 9, 63, 408, 2565, 15939, 98670, 610740, 3786588, ... A230547
[4] 0, 1, 11, 88, 627, 4235, 27830, 180180, 1157013, 7396972, ...
A102595
Triangle read by rows: T(n,k) is the number of noncrossing trees with n edges in which the maximal number of contiguous border edges starting from the root in both directions is equal to k.
Original entry on oeis.org
1, 0, 1, 0, 0, 3, 1, 4, 3, 4, 7, 20, 15, 8, 5, 42, 102, 72, 36, 15, 6, 245, 540, 366, 176, 70, 24, 7, 1428, 2950, 1944, 912, 355, 120, 35, 8, 8379, 16524, 10668, 4920, 1890, 636, 189, 48, 9, 49588, 94430, 60021, 27336, 10405, 3492, 1050, 280, 63, 10, 296010
Offset: 0
T(2,0)=T(2,1)=0, T(2,2)=3 because in all the noncrossing trees _\, /\ and /_, the maximal number of contiguous border edges starting from the root in both directions is equal to 2.
Triangle starts:
1;
0, 1;
0, 0, 3;
1, 4, 3, 4;
7, 20, 15, 8, 5;
42, 102, 72, 36, 15, 6;
...
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
- P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
- M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
-
G:=(g+z*g-t*z-2*z*g^2+t^2*(1-t)*z^3*g^2-2*t*(1-t)*z^2*g)/(1-t*z*g)^2: z:=w^2: b:=w*sqrt(3): g:=2*sin(arcsin(3*b/2)/3)/b: Gser:=simplify(series(G,w=0,24)): P[0]:=1: for n from 1 to 10 do P[n]:=sort(coeff(Gser,w^(2*n))) od: for n from 0 to 10 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
-
max = 20; z = w^2; b = w*Sqrt[3]; g = 2*(Sin[ ArcSin[3*(b/2)]/3]/b); gf = (g + z*g - t*z - 2*z*g^2 + t^2*(1 - t)*z^3*g^2 - 2*t*(1 - t)*z^2*g)/(1 - t*z*g)^2; se = Series[gf, {w, 0, max}]; Flatten[ Rest /@ DeleteCases[ (CoefficientList[t*#1, t] & ) /@ CoefficientList[se, w], {}]] (* Jean-François Alcover, Oct 05 2011, after Maple *)
-
S(n)={my(g=1+serreverse(x/(1+x)^3 + O(x*x^n))); Vec((g + x*g - y*x - 2*x*g^2 + y^2*(1-y)*x^3*g^2 - 2*y*(1-y)*x^2*g)/(1 - y*x*g)^2)}
my(v=S(10)); for(n=1, #v, my(p=v[n]); for(k=0, n-1, print1(polcoeff(p, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017
Showing 1-6 of 6 results.
Comments