cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A102651 a(n) = 4 * floor(23*2^n/15).

Original entry on oeis.org

4, 12, 24, 48, 96, 196, 392, 784, 1568, 3140, 6280, 12560, 25120, 50244, 100488, 200976, 401952, 803908, 1607816, 3215632, 6431264, 12862532, 25725064, 51450128, 102900256, 205800516, 411601032, 823202064, 1646404128, 3292808260
Offset: 0

Views

Author

Odimar Fabeny, Feb 02 2005

Keywords

Comments

In binary, each term differs from the previous by a single bit.

Crossrefs

Programs

  • Maple
    A102651:=n->4*floor(23*2^n/15); seq(A102651(n), n=0..50); # Wesley Ivan Hurt, Jan 21 2014
  • Mathematica
    Table[4*Floor[23*2^n/15], {n, 0, 50}] (* Wesley Ivan Hurt, Jan 21 2014 *)
  • PARI
    a(n)=23<Charles R Greathouse IV, Feb 04 2016

Formula

G.f.: ( 4+4*x-4*x^4 ) / ( (x-1)*(2*x-1)*(1+x)*(x^2+1) ). - R. J. Mathar, Feb 20 2011

Extensions

Edited by Don Reble, Mar 28 2006

A102652 a(n) = 4 * floor(24*2^n/15) = 4*A077854(n).

Original entry on oeis.org

4, 12, 24, 48, 100, 204, 408, 816, 1636, 3276, 6552, 13104, 26212, 52428, 104856, 209712, 419428, 838860, 1677720, 3355440, 6710884, 13421772, 26843544, 53687088, 107374180, 214748364, 429496728, 858993456, 1717986916, 3435973836
Offset: 0

Views

Author

Odimar Fabeny, Feb 02 2005

Keywords

Comments

In binary, each term differs from the previous by a single bit.

Crossrefs

Programs

  • Maple
    A102652:=n->4 * floor(24*2^n/15); seq(A102652(n), n=0..30); # Wesley Ivan Hurt, Feb 25 2014
  • Mathematica
    Table[4*Floor[24*2^n/15],{n,0,30}] (* or *) LinearRecurrence[{3,-3,3,-2},{4,12,24,48},30] (* Harvey P. Dale, Oct 20 2013 *)
    CoefficientList[Series[4/((x - 1) (2 x - 1) (x^2 + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Feb 28 2014 *)
  • PARI
    a(n)=24<Charles R Greathouse IV, Feb 04 2016

Formula

G.f.: 4 / ( (x-1)*(2*x-1)*(x^2+1) ). - R. J. Mathar, Feb 20 2011

Extensions

Edited by Don Reble, Mar 28 2006

A102653 a(n) = 4 * floor(9*2^n/5).

Original entry on oeis.org

4, 12, 28, 56, 112, 228, 460, 920, 1840, 3684, 7372, 14744, 29488, 58980, 117964, 235928, 471856, 943716, 1887436, 3774872, 7549744, 15099492, 30198988, 60397976, 120795952, 241591908, 483183820, 966367640, 1932735280, 3865470564, 7730941132, 15461882264
Offset: 0

Views

Author

Odimar Fabeny, Feb 02 2005

Keywords

Comments

In binary, each term differs from the previous by a single bit.

Crossrefs

Programs

  • Mathematica
    Table[4Floor[(27 2^n)/15],{n,0,30}] (* or *) LinearRecurrence[ {3,-3,3,-2}, {4,12,28,56},30] (* Harvey P. Dale, Jun 15 2011 *)
  • PARI
    a(n)=27<Charles R Greathouse IV, Feb 04 2016

Formula

From R. J. Mathar, Feb 20 2011: (Start)
a(n) = 4 * A151754(n+1).
G.f.: 4 * ( 1+x^2-x^3 ) / ( (x-1)*(2*x-1)*(x^2+1) ). (End)
a(0)=4, a(1)=12, a(2)=28, a(3)=56, a(n) = 3*a(n-1)-3*a(n-2)+3*a(n-3)-2*a(n-4). - Harvey P. Dale, Jun 15 2011

Extensions

Edited by Don Reble, Mar 28 2006
Showing 1-3 of 3 results.