A102650 a(n) = 4 * floor(28*2^n/15).
4, 12, 28, 56, 116, 236, 476, 952, 1908, 3820, 7644, 15288, 30580, 61164, 122332, 244664, 489332, 978668, 1957340, 3914680, 7829364, 15658732, 31317468, 62634936, 125269876, 250539756, 501079516, 1002159032, 2004318068
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,1,-2).
Programs
-
Maple
A102650:=n->4*floor(28*2^n/15); seq(A102650(n), n=0..40); # Wesley Ivan Hurt, Jan 21 2014
-
Mathematica
a[n_] := 4*Floor[28*2^n/15]; Table[a[n], {n, 0, 40}] (* Stefan Steinerberger, Apr 08 2006 *) CoefficientList[Series[(4+4x+4x^2)/((x-1)(2x-1)(1+x)(x^2+1)), {x,0,45}],x] (* Harvey P. Dale, Mar 13 2011 *)
-
PARI
a(n)=28<
Charles R Greathouse IV, Feb 04 2016
Formula
G.f.: ( 4+4*x+4*x^2 ) / ( (x-1)*(2*x-1)*(1+x)*(x^2+1) ). - R. J. Mathar, Feb 20 2011
Extensions
Edited by Don Reble, Mar 28 2006
More terms from Stefan Steinerberger, Apr 08 2006
Comments