A102702 Expansion of (2-x-2*x^2-x^3)/(1-x-x^2)^2.
2, 3, 6, 10, 18, 31, 54, 93, 160, 274, 468, 797, 1354, 2295, 3882, 6554, 11046, 18587, 31230, 52401, 87812, 146978, 245736, 410425, 684818, 1141611, 1901454, 3164458, 5262330, 8744599, 14521158, 24097797, 39965224, 66241330, 109731132
Offset: 0
References
- Thomas Koshy, Fibonacci and Lucas Numbers with Applications, Chapter 15, page 187, "Hosoya's Triangle".
- S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989, p. 183, Nr.(98).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. E. Hoggatt, Jr. and M. Bicknell-Johnson, Fibonacci convolution sequences, Fib. Quart., 15 (1977), 117-122.
- Mengmeng Liu and Andrew Yezhou Wang, The number of designated parts in compositions with restricted parts, Journal of Integer Sequences, 23 (2020), Article 20.1.8.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 35); Coefficients(R!( (2-x-2*x^2-x^3)/(1-x-x^2)^2)); // Marius A. Burtea, Dec 31 2019 -
Mathematica
CoefficientList[Series[(2-x-2x^2-x^3)/(x^4+2x^3-x^2-2x+1),{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2,-1},{2,3,6,10},40] (* Harvey P. Dale, Apr 21 2014 *)
Formula
G.f.: (2-x-2*x^2-x^3)/(1-x-x^2)^2.
F(n+1) = a(n+2) - a(n+1) - a(n).
a(0)=2, a(1)=3, a(2)=6, a(3)=10, a(n)=2*a(n-1)+a(n-2)-2*a(n-3)-a(n-4). - Harvey P. Dale, Apr 21 2014
a(n) = ((2*n+10)*F(n+1)-(n-4)*F(n))/5. - Andrew Yezhou Wang, Jul 14 2019
Extensions
Corrected by T. D. Noe, Nov 02 2006
Comments