cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102714 Expansion of (x+2) / ((x+1)*(x^2-3*x+1)).

Original entry on oeis.org

2, 5, 14, 36, 95, 248, 650, 1701, 4454, 11660, 30527, 79920, 209234, 547781, 1434110, 3754548, 9829535, 25734056, 67372634, 176383845, 461778902, 1208952860, 3165079679, 8286286176, 21693778850, 56795050373, 148691372270, 389279066436, 1019145827039
Offset: 0

Views

Author

Creighton Dement, Feb 06 2005

Keywords

Comments

A floretion-generated sequence relating Fibonacci numbers.
Floretion Algebra Multiplication Program, FAMP code: (a(n)) = 2dia[I]forseq[ + .5'i + .5'ii' + .5'ij' + .5'ik' ], 2dia[J]forseq = 2dia[K]forseq = A001654, mixforseq = A001519, tesforseq = A099016, vesforseq = A000004. Identity used: dia[I] + dia[J] + dia[K] + mix + tes = ves

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x+2)/((x+1)(x^2-3x+1)),{x,0,30}],x] (* or *) LinearRecurrence[{2,2,-1},{2,5,14},30] (* Harvey P. Dale, Apr 22 2012 *)
  • PARI
    a(n) = round((2^(-1-n)*((-1)^n*2^(1+n)+(9-5*sqrt(5))*(3-sqrt(5))^n+(3+sqrt(5))^n*(9+5*sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec((x+2)/((x+1)*(x^2-3*x+1)) + O(x^40)) \\ Colin Barker, Oct 01 2016

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3), a(0) = 2, a(1) = 5, a(2) = 14.
a(n) + a(n+1) = A100545(n).
a(n) + 2*a(n+1) + a(n+2) = A055849(n+2).
a(n) + 2*A001654(n) - A099016(n+2) + 2*A001519(n) = 0.
a(n) = (2^(-1-n)*((-1)^n*2^(1+n)+(9-5*sqrt(5))*(3-sqrt(5))^n+(3+sqrt(5))^n*(9+5*sqrt(5))))/5. - Colin Barker, Oct 01 2016
a(n) = (-1)^n +9*A001906(n+1) -A001906(n) . - R. J. Mathar, Sep 11 2019

Extensions

Corrected by T. D. Noe, Nov 02 2006, Nov 07 2006