cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A113775 Number of sets of lists (cf. A000262) whose list sizes are not a multiple of 3.

Original entry on oeis.org

1, 1, 3, 7, 49, 321, 2131, 19783, 195777, 2101249, 25721731, 340358151, 4902173233, 75688032577, 1253701725459, 22347046050631, 418439924732161, 8318748086461953, 175769214730290307, 3871849719998940679, 89734800330818444721, 2187944831367633226561
Offset: 0

Views

Author

Vladeta Jovovic, Jan 19 2006

Keywords

Crossrefs

Programs

  • Maple
    nmax := 30: B := x*(1+x)/(1-x^3) : egf := 0 : for i from 0 to nmax do egf := convert(egf+taylor(B^i,x=0,nmax+1)/i!,polynom) : od: for i from 0 to nmax do printf("%d ", i!*coeftayl(egf,x=0,i)) ; od: # R. J. Mathar, Feb 06 2008
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(0=
          irem(j, 3), 0, a(n-j)*j!*binomial(n-1, j-1)), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016
  • Mathematica
    CoefficientList[Series[E^(x*(1+x)/(1-x^3)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 25 2013 *)

Formula

E.g.f.: exp(x*(1+x)/(1-x^3)).
a(n) = a(n-1) + 2*(n-1)*a(n-2) + 2*(n-3)*(n-2)*(n-1)*a(n-3) + 2*(n-3)*(n-2)*(n-1)*a(n-4) + (n-4)*(n-3)*(n-2)*(n-1)*a(n-5) - (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6). - Vaclav Kotesovec, Sep 25 2013
a(n) ~ 6^(-1/4) * n^(n-1/4) * exp(2/3*sqrt(6*n)-n) * (1 - 43/(48*sqrt(6*n))). - Vaclav Kotesovec, Sep 25 2013

Extensions

2 more terms from R. J. Mathar, Feb 06 2008

A247007 Number of permutations on [n] admitting a ninth root.

Original entry on oeis.org

1, 1, 2, 4, 16, 80, 400, 2800, 22400, 179200, 1792000, 19712000, 216832000, 2818816000, 39463424000, 552487936000, 8839806976000, 150276718592000, 2554704216064000, 48539380105216000, 970787602104320000, 19415752042086400000, 427146544925900800000, 9824370533295718400000, 225960522265801523200000, 5649013056645038080000000, 146874339472770990080000000, 3818732827816549381939200000
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2014

Keywords

Comments

Differs from A102736 first at n=27.

Crossrefs

Column k=9 of A247005.

Programs

  • Maple
    with(combinat): with(numtheory): with(padic):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(irem(j, mul(p^ordp(9, p), p=factorset(i)))=0, (i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..27);

A113774 Number of partitions of {1,...,n} into block sizes not a multiple of 3.

Original entry on oeis.org

1, 1, 2, 4, 11, 32, 112, 415, 1732, 7678, 37115, 190016, 1039546, 5996083, 36528196, 233492044, 1564012751, 10940385668, 79762304116, 604791685063, 4760047233424, 38825234812882, 327641201731475, 2856835856307428, 25702896025566886, 238331921722835203
Offset: 0

Views

Author

Vladeta Jovovic, Jan 19 2006

Keywords

Crossrefs

Programs

  • Maple
    nmax := 30: B := add(op(1+(i mod 3),[0,1,1])*x^i/i!,i=0..nmax) : egf := 0 : for i from 0 to nmax do egf := convert(egf+taylor(B^i,x=0,nmax+1)/i!,polynom) : od: for i from 0 to nmax do printf("%d ", i!*coeftayl(egf,x=0,i)) ; od: # R. J. Mathar, Feb 06 2008
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
          irem(j, 3)=0, 0, binomial(n-1, j-1)*a(n-j)), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 17 2015
  • Mathematica
    a=Sum[x^(3i)/(3i)!,{i,1,20}]; Range[0, 20]! CoefficientList[Series[Exp[Exp[x] - 1 - a], {x, 0, 20}], x] (* Geoffrey Critzer, Jan 02 2011 *)

Formula

E.g.f.: exp(B(x)), where B(x) is e.g.f. of A011655.

Extensions

More terms from R. J. Mathar, Feb 06 2008
Showing 1-3 of 3 results.