A293525 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. Product_{j > 0, j mod k > 0} exp(x^j).
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 7, 0, 1, 1, 3, 7, 25, 0, 1, 1, 3, 13, 49, 181, 0, 1, 1, 3, 13, 49, 321, 1201, 0, 1, 1, 3, 13, 73, 381, 2131, 10291, 0, 1, 1, 3, 13, 73, 381, 2971, 19783, 97777, 0, 1, 1, 3, 13, 73, 501, 3331, 26713, 195777, 1013545, 0, 1, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, ... 0, 1, 3, 3, 3, ... 0, 7, 7, 13, 13, ... 0, 25, 49, 49, 73, ... 0, 181, 321, 381, 381, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Mathematica
kmax = 12; col[k_] := PadRight[(Exp[Sum[x^j, {j, 1, k - 1}]/(1 - x^k)] + O[x]^kmax // CoefficientList[#, x] &), kmax]*Range[0, kmax - 1]!; A = Array[col, kmax]; Table[A[[n - k + 1, k]], {n, 1, kmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 12 2017, from formula *)
Formula
E.g.f. of column k: exp((Sum_{j=1..k-1} x^j)/(1 - x^k)).
Comments