cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102741 a(n) = 3^4 * binomial(n+3, 4).

Original entry on oeis.org

81, 405, 1215, 2835, 5670, 10206, 17010, 26730, 40095, 57915, 81081, 110565, 147420, 192780, 247860, 313956, 392445, 484785, 592515, 717255, 860706, 1024650, 1210950, 1421550, 1658475, 1923831, 2219805, 2548665, 2912760, 3314520, 3756456, 4241160, 4771305, 5349645
Offset: 1

Views

Author

Zerinvary Lajos, Aug 06 2008

Keywords

Crossrefs

Cf. A027465.
Sequences of the form 3^m*binomial(n+m-1, m): A008585 (m=1), A027468 (m=2), A134171 (m=3), this sequence (m=4), A113335 (m=5).

Programs

  • Magma
    [3^4*Binomial(n+3,4): n in [1..30]]; // G. C. Greubel, May 17 2021
    
  • Maple
    seq(binomial(n+3,4)*3^4, n=1..27);
  • Mathematica
    With[{c=3^4},Table[c Binomial[n+3,4],{n,40}]]  (* Harvey P. Dale, Mar 12 2011 *)
  • Sage
    [3^4*binomial(n+3,4) for n in (1..30)] # G. C. Greubel, May 17 2021

Formula

G.f.: 81*x/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
E.g.f.: (27/8)*x*(24 + 36*x + 12*x^2 + x^3)*exp(x). - G. C. Greubel, May 17 2021
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=1} 1/a(n) = 4/243.
Sum_{n>=1} (-1)^(n+1)/a(n) = 32*log(2)/81 - 64/243. (End)