A349454
Number T(n,k) of endofunctions on [n] with exactly k fixed points, all of which are isolated; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 8, 3, 0, 1, 81, 32, 6, 0, 1, 1024, 405, 80, 10, 0, 1, 15625, 6144, 1215, 160, 15, 0, 1, 279936, 109375, 21504, 2835, 280, 21, 0, 1, 5764801, 2239488, 437500, 57344, 5670, 448, 28, 0, 1, 134217728, 51883209, 10077696, 1312500, 129024, 10206, 672, 36, 0, 1
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
1, 0, 1;
8, 3, 0, 1;
81, 32, 6, 0, 1;
1024, 405, 80, 10, 0, 1;
15625, 6144, 1215, 160, 15, 0, 1;
279936, 109375, 21504, 2835, 280, 21, 0, 1;
5764801, 2239488, 437500, 57344, 5670, 448, 28, 0, 1;
...
-
T:= (n, k)-> binomial(n, k)*(n-k-1)^(n-k):
seq(seq(T(n, k), k=0..n), n=0..10);
A134171
a(n) = (9/2)*(n-1)*(n-2)*(n-3).
Original entry on oeis.org
0, 0, 0, 27, 108, 270, 540, 945, 1512, 2268, 3240, 4455, 5940, 7722, 9828, 12285, 15120, 18360, 22032, 26163, 30780, 35910, 41580, 47817, 54648, 62100, 70200, 78975, 88452, 98658, 109620, 121365, 133920, 147312, 161568, 176715, 192780, 209790, 227772, 246753
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- D. Zvonkine, Home Page.
- D. Zvonkine, Counting ramified coverings and intersection theory on Hurwitz spaces II (local structure of Hurwitz spaces and combinatorial results), Moscow Mathematical Journal, Vol. 7, No. 1 (2007), 135-162.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[(9/2)*(n-1)*(n-2)*(n-3) : n in [1..50]]; // Wesley Ivan Hurt, May 29 2016
-
seq(27*binomial(n-1, 3), n=1..30); # Zerinvary Lajos, May 18 2008
-
LinearRecurrence[{4,-6,4,-1}, {0,0,0,27}, 50] (* G. C. Greubel, May 29 2016 *)
A113335
a(n) = 3^5 * binomial(n+4, 5).
Original entry on oeis.org
243, 1458, 5103, 13608, 30618, 61236, 112266, 192456, 312741, 486486, 729729, 1061424, 1503684, 2082024, 2825604, 3767472, 4944807, 6399162, 8176707, 10328472, 12910590, 15984540, 19617390, 23882040, 28857465, 34628958, 41288373, 48934368, 57672648, 67616208
Offset: 1
-
[3^5*Binomial(n+4,5): n in [1..30]]; // G. C. Greubel, May 17 2021
-
seq(binomial(n+4,5)*3^5, n=1..27);
-
With[{c=3^5},Table[c Binomial[n+4,5],{n,30}]] (* Harvey P. Dale, Apr 11 2011 *)
-
[3^5*binomial(n+4,5) for n in (1..30)] # G. C. Greubel, May 17 2021
Showing 1-3 of 3 results.
Comments