A102741 a(n) = 3^4 * binomial(n+3, 4).
81, 405, 1215, 2835, 5670, 10206, 17010, 26730, 40095, 57915, 81081, 110565, 147420, 192780, 247860, 313956, 392445, 484785, 592515, 717255, 860706, 1024650, 1210950, 1421550, 1658475, 1923831, 2219805, 2548665, 2912760, 3314520, 3756456, 4241160, 4771305, 5349645
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Magma
[3^4*Binomial(n+3,4): n in [1..30]]; // G. C. Greubel, May 17 2021
-
Maple
seq(binomial(n+3,4)*3^4, n=1..27);
-
Mathematica
With[{c=3^4},Table[c Binomial[n+3,4],{n,40}]] (* Harvey P. Dale, Mar 12 2011 *)
-
Sage
[3^4*binomial(n+3,4) for n in (1..30)] # G. C. Greubel, May 17 2021
Formula
G.f.: 81*x/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
E.g.f.: (27/8)*x*(24 + 36*x + 12*x^2 + x^3)*exp(x). - G. C. Greubel, May 17 2021
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=1} 1/a(n) = 4/243.
Sum_{n>=1} (-1)^(n+1)/a(n) = 32*log(2)/81 - 64/243. (End)
Comments