A374487
Expansion of 1/(1 - 2*x - 7*x^2)^(3/2).
Original entry on oeis.org
1, 3, 18, 70, 315, 1281, 5348, 21708, 88245, 355135, 1425270, 5692050, 22666735, 89986365, 356400840, 1408459928, 5555679849, 21877337979, 86020384730, 337769595870, 1324677499299, 5189411915897, 20308936981932, 79406140870500, 310206869770525, 1210898719869111
Offset: 0
-
Module[{x}, CoefficientList[Series[1/(1 - (7*x + 2)*x)^(3/2), {x, 0, 25}], x]] (* Paolo Xausa, Aug 25 2025 *)
-
a(n) = binomial(n+2, 2)*sum(k=0, n\2, 2^k*binomial(n, 2*k)*binomial(2*k, k)/(k+1));
A374488
Expansion of 1/(1 - 2*x - 11*x^2)^(3/2).
Original entry on oeis.org
1, 3, 24, 100, 555, 2541, 12628, 59004, 281655, 1315765, 6171132, 28692456, 133315273, 616780815, 2848833120, 13124483344, 60364983987, 277142478921, 1270586298520, 5817063737100, 26600252408961, 121501917998263, 554429553154044, 2527595449990500
Offset: 0
-
Module[{x}, CoefficientList[Series[1/(1 - (11*x + 2)*x)^(3/2), {x, 0, 25}], x]] (* Paolo Xausa, Aug 25 2025 *)
-
a(n) = binomial(n+2, 2)*sum(k=0, n\2, 3^k*binomial(n, 2*k)*binomial(2*k, k)/(k+1));
A374508
Expansion of 1/(1 - 2*x + 5*x^2)^(5/2).
Original entry on oeis.org
1, 5, 5, -35, -140, -84, 840, 2640, 495, -16445, -41041, 11375, 282100, 559300, -474300, -4399260, -6807225, 11062275, 63677075, 73363675, -208411280, -865816600, -665544100, 3475847700, 11129861925, 4130560161, -53332660395, -135538728395, 9634906640
Offset: 0
-
a[n_]:= Pochhammer[n+1, 4]*Hypergeometric2F1[(1-n)/2, -n/2, 3, -4]/4!; Array[a,29,0] (* Stefano Spezia, Jul 10 2024 *)
-
a(n) = binomial(n+4, 2)/6*sum(k=0, n\2, (-1)^k*binomial(n+2, n-2*k)*binomial(2*k+2, k));
A374509
Expansion of 1/(1 - 2*x + 5*x^2)^(7/2).
Original entry on oeis.org
1, 7, 14, -42, -294, -462, 1386, 7722, 9009, -37037, -160160, -123760, 835380, 2848860, 1046520, -16550520, -45140865, 3533145, 296447690, 648593330, -393463070, -4895709390, -8489647530, 10975099590, 75528298755, 100311659721, -230350834728, -1097798696456
Offset: 0
-
a[n_]:= Pochhammer[n+1, 6]*Hypergeometric2F1[(1-n)/2, -n/2, 4, -4]/6!; Array[a,28,0] (* Stefano Spezia, Jul 10 2024 *)
-
a(n) = binomial(n+6, 3)/20*sum(k=0, n\2, (-1)^k*binomial(n+3, n-2*k)*binomial(2*k+3, k));
Showing 1-4 of 4 results.