cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A387237 Expansion of 1/((1-x) * (1-5*x))^(5/2).

Original entry on oeis.org

1, 15, 145, 1155, 8260, 55188, 351960, 2170080, 13042095, 76827465, 445335891, 2547479025, 14412134100, 80773641900, 449065521300, 2479190589180, 13603361708775, 74238475926825, 403197150223175, 2180369322394725, 11744998515662720, 63044308615576200, 337323759106291100
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/((1-x) * (1-5*x))^(5/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 24 2025
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-5*x))^(5/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 24 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-x)*(1-5*x))^(5/2))
    

Formula

n*a(n) = (6*n+9)*a(n-1) - 5*(n+3)*a(n-2) for n > 1.
a(n) = (-1)^n * Sum_{k=0..n} 5^k * binomial(-5/2,k) * binomial(-5/2,n-k).
a(n) = Sum_{k=0..n} (-4)^k * binomial(-5/2,k) * binomial(n+4,n-k).
a(n) = Sum_{k=0..n} 4^k * 5^(n-k) * binomial(-5/2,k) * binomial(n+4,n-k).
a(n) = (binomial(n+4,2)/6) * Sum_{k=0..floor(n/2)} 3^(n-2*k) * binomial(n+2,n-2*k) * binomial(2*k+2,k) = (binomial(n+4,2)/6) * A026377(n+2).
a(n) = (-1)^n * Sum_{k=0..n} 6^k * (5/6)^(n-k) * binomial(-5/2,k) * binomial(k,n-k).

A374509 Expansion of 1/(1 - 2*x + 5*x^2)^(7/2).

Original entry on oeis.org

1, 7, 14, -42, -294, -462, 1386, 7722, 9009, -37037, -160160, -123760, 835380, 2848860, 1046520, -16550520, -45140865, 3533145, 296447690, 648593330, -393463070, -4895709390, -8489647530, 10975099590, 75528298755, 100311659721, -230350834728, -1097798696456
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= Pochhammer[n+1, 6]*Hypergeometric2F1[(1-n)/2, -n/2, 4, -4]/6!; Array[a,28,0] (* Stefano Spezia, Jul 10 2024 *)
  • PARI
    a(n) = binomial(n+6, 3)/20*sum(k=0, n\2, (-1)^k*binomial(n+3, n-2*k)*binomial(2*k+3, k));

Formula

a(0) = 1, a(1) = 7; a(n) = ((2*n+5)*a(n-1) - 5*(n+5)*a(n-2))/n.
a(n) = (binomial(n+6,3)/20) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+3,n-2*k) * binomial(2*k+3,k).
a(n) = Pochhammer(n+1, 6)*hypergeom([(1-n)/2, -n/2], [4], -4)/6!. - Stefano Spezia, Jul 10 2024
a(n) = (-1)^n * Sum_{k=0..n} 2^k * (5/2)^(n-k) * binomial(-7/2,k) * binomial(k,n-k). - Seiichi Manyama, Aug 23 2025
Showing 1-2 of 2 results.