cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A387238 Expansion of 1/((1-x) * (1-5*x))^(7/2).

Original entry on oeis.org

1, 21, 266, 2646, 22806, 178794, 1310694, 9140274, 61330269, 399107709, 2533330800, 15751925280, 96257031780, 579556206180, 3445117599480, 20252115155160, 117890464642335, 680320688005035, 3895668955041710, 22152779612619810, 125183331416173030
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/((1-x) * (1-5*x))^(7/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 24 2025
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-5*x))^(7/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 24 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-x)*(1-5*x))^(7/2))
    

Formula

n*a(n) = (6*n+15)*a(n-1) - 5*(n+5)*a(n-2) for n > 1.
a(n) = (-1)^n * Sum_{k=0..n} 5^k * binomial(-7/2,k) * binomial(-7/2,n-k).
a(n) = Sum_{k=0..n} (-4)^k * binomial(-7/2,k) * binomial(n+6,n-k).
a(n) = Sum_{k=0..n} 4^k * 5^(n-k) * binomial(-7/2,k) * binomial(n+6,n-k).
a(n) = (binomial(n+6,3)/20) * A387239(n).
a(n) = (-1)^n * Sum_{k=0..n} 6^k * (5/6)^(n-k) * binomial(-7/2,k) * binomial(k,n-k).

A374508 Expansion of 1/(1 - 2*x + 5*x^2)^(5/2).

Original entry on oeis.org

1, 5, 5, -35, -140, -84, 840, 2640, 495, -16445, -41041, 11375, 282100, 559300, -474300, -4399260, -6807225, 11062275, 63677075, 73363675, -208411280, -865816600, -665544100, 3475847700, 11129861925, 4130560161, -53332660395, -135538728395, 9634906640
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= Pochhammer[n+1, 4]*Hypergeometric2F1[(1-n)/2, -n/2, 3, -4]/4!; Array[a,29,0] (* Stefano Spezia, Jul 10 2024 *)
  • PARI
    a(n) = binomial(n+4, 2)/6*sum(k=0, n\2, (-1)^k*binomial(n+2, n-2*k)*binomial(2*k+2, k));

Formula

a(0) = 1, a(1) = 5; a(n) = ((2*n+3)*a(n-1) - 5*(n+3)*a(n-2))/n.
a(n) = (binomial(n+4,2)/6) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+2,n-2*k) * binomial(2*k+2,k).
a(n) = Pochhammer(n+1, 4)*hypergeom([(1-n)/2, -n/2], [3], -4)/4!. - Stefano Spezia, Jul 10 2024
a(n) = (-1)^n * Sum_{k=0..n} 2^k * (5/2)^(n-k) * binomial(-5/2,k) * binomial(k,n-k). - Seiichi Manyama, Aug 23 2025
Showing 1-2 of 2 results.