cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102866 Number of finite languages over a binary alphabet (set of nonempty binary words of total length n).

Original entry on oeis.org

1, 2, 5, 16, 42, 116, 310, 816, 2121, 5466, 13937, 35248, 88494, 220644, 546778, 1347344, 3302780, 8057344, 19568892, 47329264, 114025786, 273709732, 654765342, 1561257968, 3711373005, 8797021714, 20794198581, 49024480880, 115292809910, 270495295636
Offset: 0

Views

Author

Philippe Flajolet, Mar 01 2005

Keywords

Comments

Analogous to A034899 (which also enumerates multisets of words)

Examples

			a(2) = 5 because the sets are {a,b}, {aa}, {ab}, {ba}, {bb}.
a(3) = 16 because the sets are {a,aa}, {a,ab}, {a,ba}, {a,bb}, {b,aa}, {b,ab}, {b,ba}, {b,bb}, {aaa}, {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {bbb}.
		

Crossrefs

Column k=2 of A292804.
Row sums of A208741 and of A360634.

Programs

  • Maple
    series(exp(add((-1)^(j-1)/j*(2*z^j)/(1-2*z^j),j=1..40)),z,40);
  • Mathematica
    nn = 20; p = Product[(1 + x^i)^(2^i), {i, 1, nn}]; CoefficientList[Series[p, {x, 0, nn}], x] (* Geoffrey Critzer, Mar 07 2012 *)
    CoefficientList[Series[E^Sum[(-1)^(k-1)/k*(2*x^k)/(1-2*x^k), {k,1,30}], {x, 0, 30}], x] (* Vaclav Kotesovec, Sep 13 2014 *)

Formula

G.f.: exp(Sum((-1)^(j-1)/j*(2*z^j)/(1-2*z^j), j=1..infinity)).
Asymptotics (Gerhold, 2011): a(n) ~ c * 2^(n-1)*exp(2*sqrt(n)-1/2) / (sqrt(Pi) * n^(3/4)), where c = exp( Sum_{k>=2} (-1)^(k-1)/(k*(2^(k-1)-1)) ) = 0.6602994483152065685... . - Vaclav Kotesovec, Sep 13 2014
Weigh transform of A000079. - Alois P. Heinz, Jun 25 2018