cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A258162 Decimal expansion of the log Gamma integral LG_3 = Integral_{0..1} log(Gamma(x))^3 dx.

Original entry on oeis.org

5, 7, 4, 0, 3, 8, 8, 8, 0, 7, 2, 2, 9, 4, 7, 4, 2, 8, 0, 0, 1, 9, 5, 7, 1, 6, 8, 8, 1, 0, 2, 4, 6, 1, 4, 6, 2, 9, 6, 1, 0, 1, 3, 0, 0, 7, 4, 5, 4, 8, 7, 3, 3, 3, 1, 4, 2, 5, 4, 0, 2, 4, 5, 1, 2, 3, 8, 8, 8, 4, 3, 8, 7, 1, 7, 7, 1, 2, 5, 0, 2, 6, 1, 0, 6, 2, 6, 2, 1, 6, 6, 6, 2, 8, 7, 2, 3, 3, 0, 5, 1, 5, 7, 8
Offset: 1

Views

Author

Jean-François Alcover, May 22 2015

Keywords

Examples

			5.7403888072294742800195716881024614629610130074548733314254...
		

Crossrefs

Cf. A075700 (LG_1), A102887 (LG_2), A258163 (LG_4), A258164 (LG_5).

Programs

  • Maple
    evalf(Int(log(GAMMA(x))^3,x=0..1),120); # Vaclav Kotesovec, May 22 2015
  • Mathematica
    LG3 = NIntegrate[LogGamma[x]^3, {x, 0, 1}, WorkingPrecision -> 104]; RealDigits[LG3] // First
  • PARI
    intnum(x=0, 1, log(gamma(x))^3) \\ Michel Marcus, Oct 24 2017

A258163 Decimal expansion of the log Gamma integral LG_4 = Integral_{0..1} log(Gamma(x))^4 dx.

Original entry on oeis.org

2, 3, 3, 8, 9, 5, 1, 4, 4, 6, 5, 5, 1, 6, 8, 0, 1, 6, 1, 9, 6, 0, 0, 5, 5, 9, 1, 0, 5, 0, 5, 9, 1, 4, 0, 6, 5, 9, 0, 0, 7, 5, 2, 7, 6, 8, 3, 1, 9, 8, 4, 6, 4, 6, 6, 7, 7, 8, 5, 4, 5, 2, 0, 5, 4, 5, 6, 3, 6, 4, 7, 9, 5, 2, 5, 5, 8, 0, 1, 4, 8, 8, 8, 1, 0, 1, 7, 7, 7, 0, 4, 0, 3, 1, 5, 9, 8, 2, 6, 4, 8, 6, 5, 7, 9
Offset: 2

Views

Author

Jean-François Alcover, May 22 2015

Keywords

Examples

			23.389514465516801619600559105059140659007527683198464667785452...
		

Crossrefs

Cf. A075700 (LG_1), A102887 (LG_2), A258162 (LG_3), A258164 (LG_5).

Programs

  • Maple
    evalf(Int(log(GAMMA(x))^4,x=0..1),120); # Vaclav Kotesovec, May 22 2015
  • Mathematica
    LG4 = NIntegrate[LogGamma[x]^4, {x, 0, 1}, WorkingPrecision -> 105];
    RealDigits[LG4] // First

A258164 Decimal expansion of the log Gamma integral LG_5 = Integral_{0..1} log(Gamma(x))^5 dx.

Original entry on oeis.org

1, 1, 8, 2, 9, 8, 7, 9, 3, 1, 8, 4, 5, 5, 1, 2, 5, 8, 7, 5, 4, 1, 6, 7, 2, 9, 0, 7, 2, 9, 2, 9, 6, 4, 4, 8, 4, 9, 0, 2, 9, 2, 8, 5, 2, 9, 0, 1, 0, 8, 2, 0, 6, 5, 7, 4, 7, 3, 4, 1, 1, 0, 4, 6, 0, 5, 3, 5, 5, 7, 2, 1, 9, 9, 6, 5, 6, 3, 2, 6, 3, 5, 3, 9, 0, 1, 6, 7, 9, 8, 8, 4, 3, 9, 3, 4, 7, 8, 8, 6, 4, 5, 5, 5, 3
Offset: 3

Views

Author

Jean-François Alcover, May 22 2015

Keywords

Examples

			118.2987931845512587541672907292964484902928529010820657473411046...
		

Crossrefs

Cf. A075700 (LG_1), A102887 (LG_2), A258162 (LG_3), A258163 (LG_4).

Programs

  • Maple
    evalf(Int(log(GAMMA(x))^5,x=0..1),120); # Vaclav Kotesovec, May 22 2015
  • Mathematica
    LG5 = NIntegrate[LogGamma[x]^5, {x, 0, 1}, WorkingPrecision -> 105]; RealDigits[LG5] // First
Showing 1-3 of 3 results.