A103134 a(n) = Fibonacci(6n+4).
3, 55, 987, 17711, 317811, 5702887, 102334155, 1836311903, 32951280099, 591286729879, 10610209857723, 190392490709135, 3416454622906707, 61305790721611591, 1100087778366101931, 19740274219868223167, 354224848179261915075, 6356306993006846248183
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..750
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (18,-1).
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Subsequence of A033887.
Cf. A000032, A000045, A001906, A001519, A015448, A014445, A033888, A033889, A033890, A033891, A049310, A049660, A102312, A099100, A134490, A134491, A134492, A134493, A134494, A134495, A103134, A134497, A134498, A134499, A134500, A134501, A134502, A134503, A134504.
Cf. A103135.
Programs
-
Magma
[Fibonacci(6*n +4): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Mathematica
Table[Fibonacci[6n+4], {n, 0, 30}] LinearRecurrence[{18,-1},{3,55},20] (* Harvey P. Dale, Mar 29 2023 *) Table[ChebyshevU[3*n+1, 3/2], {n, 0, 20}] (* Vaclav Kotesovec, May 27 2023 *)
-
PARI
a(n)=fibonacci(6*n+4) \\ Charles R Greathouse IV, Feb 05 2013
Formula
G.f.: (x+3)/(x^2-18*x+1).
a(n) = 18*a(n-1) - a(n-2) for n>1; a(0)=3, a(1)=55. - Philippe Deléham, Nov 17 2008
a(n) = ((15-7*sqrt(5)+(9+4*sqrt(5))^(2*n)*(15+7*sqrt(5))))/(10*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
a(n) = S(3*n+1, 3) = 3*S(n,18) + S(n-1,18), with the Chebyshev S polynomials (A049310), S(-1, x) = 0, and S(n, 18) = A049660(n+1). - Wolfdieter Lang, May 08 2023
Extensions
Edited by N. J. A. Sloane, Aug 10 2010
Comments