cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A102698 Number of equilateral triangles with coordinates (x,y,z) in the set {0, 1,...,n}.

Original entry on oeis.org

8, 80, 368, 1264, 3448, 7792, 16176, 30696, 54216, 90104, 143576, 220328, 326680, 471232, 664648, 916344, 1241856, 1655208, 2172584, 2812664, 3598664, 4553800, 5702776, 7075264, 8705088, 10628928, 12880056, 15496616, 18523472, 22003808
Offset: 1

Views

Author

Joshua Zucker, Feb 04 2005

Keywords

Comments

Inspired by Problem 25 on the 2005 AMC-12A Mathematics Competition, which asked for a(2).

Examples

			a(1) = 8 because in the unit cube, equilateral triangles are formed by cutting off any one of the 8 corners.
a(2) = 80 because there are 8 unit cubes with 8 each, 8 larger triangles (analogous to the 8 in the unit cube, but twice as big) and also 8 triangles of side length sqrt(6).
		

Crossrefs

Cf. a(n)=8*A103501, A103158 tetrahedra in lattice cube.

Programs

  • Maple
    # See Ionascu link for Maple program.
  • Mathematica
    (* See Obando link for Mathematica program. *)

Formula

a(n) approximately equals n^4.989; also lim log(a(n))/log(n) exists. - Eugen J. Ionascu, Dec 09 2006

Extensions

More terms from Hugo Pfoertner, Feb 10 2005
Edited by Ray Chandler, Sep 15 2007, Jul 27 2010

A103426 (1/4)*Number of non-degenerate triangles that can be formed from the points of an (n+1)X(n+1)X(n+1) lattice cube.

Original entry on oeis.org

14, 719, 10322, 78973, 412666, 1662616, 5550432, 16056600, 41504082, 97957235, 214501838, 441056849, 859632934, 1599921616, 2860527328, 4937138832, 8259305646, 13437461703, 21322651346, 33080660021, 50283889886, 75023188336
Offset: 1

Views

Author

Hugo Pfoertner, Feb 08 2005

Keywords

Crossrefs

Cf. special triangles in lattice cube: A103427, A103428, A103429, A103499, A103500, A103501; A103158 tetrahedra in lattice cube.

A103428 (1/12)*Number of non-degenerate obtuse triangles that can be formed from the points of an (n+1)X(n+1)X(n+1) lattice cube.

Original entry on oeis.org

0, 62, 1270, 11266, 63322, 266748, 915720, 2701073, 7077080, 16876415, 37242500, 77038188, 150862354, 281877711, 505585682, 874900010, 1466826558, 2390947859, 3799984292, 5903574820, 8984255594, 13418520513, 19700297034, 28470461533
Offset: 1

Views

Author

Hugo Pfoertner, Feb 08 2005

Keywords

Crossrefs

Cf. all triangles in lattice cube A103426; special triangles in lattice cube: A103427, A103429, A103499, A103500, A103501; A103158 tetrahedra in lattice cube.
Cf. A190020 (analogous 2-dimensional problem).

A103429 (1/4)*number of acute triangles that can be formed from the points of an (n+1)X(n+1)X(n+1) lattice cube.

Original entry on oeis.org

2, 194, 3434, 29356, 162190, 679654, 2323878, 6839595, 17909922, 42675551, 94125356, 194693240, 381214450, 712191373, 1277323894, 2210486280, 3706015236, 6040816887, 9601083812, 14916225896, 22701123860, 33905935285
Offset: 1

Views

Author

Hugo Pfoertner, Feb 08 2005

Keywords

Crossrefs

Cf. all triangles in lattice cube A103426; special triangles in lattice cube: A103427, A103428, A103499, A103500, A103501; A103158 tetrahedra in lattice cube.
Cf. A190019 (analogous 2-dimensional problem).

A103501 (1/8)*number of equilateral triangles that can be formed from the points of an (n+1)X(n+1)X(n+1) lattice cube.

Original entry on oeis.org

1, 10, 46, 158, 431, 974, 2022, 3837, 6777, 11263, 17947, 27541, 40835, 58904, 83081, 114543, 155232, 206901, 271573, 351583, 449833, 569225, 712847, 884408, 1088136, 1328616, 1610007, 1937077, 2315434, 2750476, 3250073, 3820925, 4469597
Offset: 1

Views

Author

Hugo Pfoertner, Feb 08 2005

Keywords

Crossrefs

Cf. all triangles in lattice cube A103426; special triangles in lattice cube: A103427, A103428, A103429, A103499, A103500; A103158 tetrahedra in lattice cube.

Formula

a(n) = A102698(n)/8.

Extensions

a(32)-a(100) from Ray Chandler, Sep 15 2007

A103427 (1/12) * Number of non-degenerate scalene triangles that can be formed from the points of an (n+1) X (n+1) X (n+1) lattice cube.

Original entry on oeis.org

2, 175, 2904, 23522, 126888, 521475, 1765382, 5153295, 13412318, 31816983, 69951724, 144272314, 281895828, 525712348, 941516596, 1627256650, 2725454906, 4438574843, 7049265930, 10944500376, 16646835858, 24851001712, 36469592898
Offset: 1

Views

Author

Hugo Pfoertner, Feb 08 2005

Keywords

Crossrefs

Cf. all triangles in lattice cube A103426; special triangles in lattice cube: A103428, A103429, A103499, A103500, A103501; A103158 tetrahedra in lattice cube.

A103499 (1/12)*number of right triangles that can be formed from the points of an (n+1)X(n+1)X(n+1) lattice cube.

Original entry on oeis.org

4, 113, 1026, 5273, 20170, 60906, 159798, 371262, 787640, 1550813, 2882994, 5083015, 8610474, 14032370, 22148796, 33984174, 50936912, 74600413, 107204886, 151236555, 209999748, 287230504, 387791652, 516909272, 681578384, 888990683
Offset: 1

Views

Author

Hugo Pfoertner, Feb 08 2005

Keywords

Crossrefs

Cf. all triangles in lattice cube A103426; special triangles in lattice cube: A103427, A103428, A103429, A103500, A103501; A103158 tetrahedra in lattice cube.

A103500 (1/4)*number of non-degenerate isosceles triangles that can be formed from the points of an (n+1)X(n+1)X(n+1) lattice cube.

Original entry on oeis.org

8, 194, 1610, 8407, 32002, 98191, 254286, 596715, 1267128, 2506286, 4646666, 8239907, 13945450, 22784572, 35977540, 55368882, 82940928, 121737174, 174853556, 247158893, 343382312, 470183200, 634503574, 847118119, 1117272006
Offset: 1

Views

Author

Hugo Pfoertner, Feb 08 2005

Keywords

Crossrefs

Cf. all triangles in lattice cube A103426; special triangles in lattice cube: A103427, A103428, A103429, A103499, A103501; A103158 tetrahedra in lattice cube.

A098928 Number of cubes that can be formed from the points of a cubical grid of n X n X n points.

Original entry on oeis.org

0, 1, 9, 36, 100, 229, 473, 910, 1648, 2795, 4469, 6818, 10032, 14315, 19907, 27190, 36502, 48233, 62803, 80736, 102550, 128847, 160271, 197516, 241314, 292737, 352591, 421764, 501204, 592257, 696281, 814450, 948112, 1098607, 1267367
Offset: 1

Views

Author

Ignacio Larrosa Cañestro, Oct 19 2004, Sep 29 2009

Keywords

Comments

Skew cubes are allowed.

Examples

			For n = 3 there are 8 cubes of volume 1 and 1 cube of volume 8; thus a(3)=9. - _José María Grau Ribas_, Mar 15 2014
a(6)=229 because we can place 15^2 cubes in a 6 X 6 X 6 cubical grid with their edges parallel to the faces of the grid, plus 4 cubes of edge 3 with a vertex in each face of the lattice and the other two vertices on a diagonal.
		

Crossrefs

Cf. A103158.
Cf. A000537 (without skew cubes), A002415 (number of squares with corners on an n X n grid), A108279, A102698.

Programs

  • Mathematica
    Needs["Quaternions`"];
    (* Initialize variables *)
    R = 20;
    NN = 1010;
    (* Quaternion operations *)
    test[q_Quaternion] :=
      Module[{unit, res, a, b, c, u, v, w, p},
       If[Round[Norm[q]] > R, Return[]];
       If[q == Quaternion[0, 0, 0, 0], Return[]];
       unit = Quaternion[0, 1, 0, 0];
       res = q ** unit ** Conjugate[q];
       a = Abs[res[[2]]] + Abs[res[[3]]] + Abs[res[[4]]];
       unit = Quaternion[0, 0, 1, 0];
       res = q ** unit ** Conjugate[q];
       b = Abs[res[[2]]] + Abs[res[[3]]] + Abs[res[[4]]];
       unit = Quaternion[0, 0, 0, 1];
       res = q ** unit ** Conjugate[q];
       c = Abs[res[[2]]] + Abs[res[[3]]] + Abs[res[[4]]];
       For[i = 1, i <= (R - 1)/Max[a, b, c], i++,
        If[SquareFreeQ[i], {u = a*i;
          v = b*i;
          w = c*i;
          p = Max[u, v, w] + 1;
          coe[[p + 1, 4]] += (1);
          coe[[p + 1, 3]] -= (u + v + w);
          coe[[p + 1, 2]] += (u*v + v*w + w*u);
          coe[[p + 1, 1]] -= (u*v*w)}]]];
    (* Set up coefficient matrix *)
    coe = ConstantArray[0, {NN, 4}];
    (* Loop through quaternions *)
    rt = Ceiling[Sqrt[R]] + 1;
    For[s = -rt, s <= rt, s++,
      For[x = -rt, x <= rt, x++,
       For[y = -rt, y <= rt, y++,
        For[z = -rt, z <= rt, z++, test[Quaternion[s, x, y, z]];
         test[Quaternion[s + 0.5, x + 0.5, y + 0.5, z + 0.5]];]]]];
    newCoe = coe;
    newCoe[[2 ;; ;; 2]] = coe[[2 ;; ;; 2]]/2;
    (* Calculate and output results *)
    For[i = 2, i <= R + 1, i++, ans = 0;
      For[j = 4, j >= 1, j--, newCoe[[i, j]] += newCoe[[i - 1, j]];
       ans = ans*(i - 1) + newCoe[[i, j]];
       ];
      Print[i - 1, " ", ans/24];];
    (* Haomin Yang, Aug 29 2023 *)

Extensions

Edited by Ray Chandler, Apr 05 2010
Further edited by N. J. A. Sloane, Mar 31 2016

A334581 Number of ways to choose 3 points that form an equilateral triangle from the A000292(n) points in a regular tetrahedral grid of side length n.

Original entry on oeis.org

0, 0, 4, 24, 84, 224, 516, 1068, 2016, 3528, 5832, 9256, 14208, 21180, 30728, 43488, 60192, 81660, 108828, 142764, 184708, 236088, 298476, 373652, 463524, 570228, 696012, 843312, 1014720, 1213096, 1441512, 1703352, 2002196, 2341848, 2726400, 3160272, 3648180
Offset: 0

Views

Author

Peter Kagey, May 06 2020

Keywords

Comments

a(n) >= 4 * A269747(n).
a(n) >= 4 * A000389(n+3) = A210569(n+2).
a(n) >= 4 * (n-1) + 4 * a(n-1) - 6 * a(n-2) + 4 * a(n-3) - a(n-4) for n >= 4.

Crossrefs

Cf. A000332 (equilateral triangles in triangular grid), A269747 (regular tetrahedra in a tetrahedral grid), A102698 (equilateral triangles in cube), A103158 (regular tetrahedra in cube).
Showing 1-10 of 16 results. Next