cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A103158 (1/2)*number of regular tetrahedra that can be formed using the points in an (n+1) X (n+1) X (n+1) lattice cube.

Original entry on oeis.org

1, 9, 36, 104, 257, 549, 1058, 1896, 3199, 5145, 7926, 11768, 16967, 23859, 32846, 44378, 58977, 77215, 99684, 126994, 159963, 199443, 246304, 301702, 366729, 442587, 530508, 631820, 748121, 880941, 1031930, 1202984, 1395927, 1612655, 1855676, 2127122, 2429577
Offset: 1

Views

Author

Hugo Pfoertner, Feb 08 2005

Keywords

Examples

			a(1)=1 because there are 2 ways to form a regular tetrahedron using vertices of the unit cube: Either [(0,0,0),(0,1,1),(1,0,1),(1,1,0)] or [(1,1,1),(1,0,0),(0,1,0),(0,0,1)].
		

References

  • E. J. Ionascu, Regular tetrahedra whose vertices have integer coordinates. Acta Math. Univ. Comenian. (N.S.) 80 (2011), no. 2, 161-170; (Acta Mathematica Universitatis Comenianae) MR2835272 (2012h:11044).

Crossrefs

Cf. triangles in lattice cube: A103426, A103427, A103428, A103429, A103499, A103500; A096315 n+1 equidistant points in Z^n.
Cf. A098928.

A103426 (1/4)*Number of non-degenerate triangles that can be formed from the points of an (n+1)X(n+1)X(n+1) lattice cube.

Original entry on oeis.org

14, 719, 10322, 78973, 412666, 1662616, 5550432, 16056600, 41504082, 97957235, 214501838, 441056849, 859632934, 1599921616, 2860527328, 4937138832, 8259305646, 13437461703, 21322651346, 33080660021, 50283889886, 75023188336
Offset: 1

Views

Author

Hugo Pfoertner, Feb 08 2005

Keywords

Crossrefs

Cf. special triangles in lattice cube: A103427, A103428, A103429, A103499, A103500, A103501; A103158 tetrahedra in lattice cube.

A103428 (1/12)*Number of non-degenerate obtuse triangles that can be formed from the points of an (n+1)X(n+1)X(n+1) lattice cube.

Original entry on oeis.org

0, 62, 1270, 11266, 63322, 266748, 915720, 2701073, 7077080, 16876415, 37242500, 77038188, 150862354, 281877711, 505585682, 874900010, 1466826558, 2390947859, 3799984292, 5903574820, 8984255594, 13418520513, 19700297034, 28470461533
Offset: 1

Views

Author

Hugo Pfoertner, Feb 08 2005

Keywords

Crossrefs

Cf. all triangles in lattice cube A103426; special triangles in lattice cube: A103427, A103429, A103499, A103500, A103501; A103158 tetrahedra in lattice cube.
Cf. A190020 (analogous 2-dimensional problem).

A103501 (1/8)*number of equilateral triangles that can be formed from the points of an (n+1)X(n+1)X(n+1) lattice cube.

Original entry on oeis.org

1, 10, 46, 158, 431, 974, 2022, 3837, 6777, 11263, 17947, 27541, 40835, 58904, 83081, 114543, 155232, 206901, 271573, 351583, 449833, 569225, 712847, 884408, 1088136, 1328616, 1610007, 1937077, 2315434, 2750476, 3250073, 3820925, 4469597
Offset: 1

Views

Author

Hugo Pfoertner, Feb 08 2005

Keywords

Crossrefs

Cf. all triangles in lattice cube A103426; special triangles in lattice cube: A103427, A103428, A103429, A103499, A103500; A103158 tetrahedra in lattice cube.

Formula

a(n) = A102698(n)/8.

Extensions

a(32)-a(100) from Ray Chandler, Sep 15 2007

A103427 (1/12) * Number of non-degenerate scalene triangles that can be formed from the points of an (n+1) X (n+1) X (n+1) lattice cube.

Original entry on oeis.org

2, 175, 2904, 23522, 126888, 521475, 1765382, 5153295, 13412318, 31816983, 69951724, 144272314, 281895828, 525712348, 941516596, 1627256650, 2725454906, 4438574843, 7049265930, 10944500376, 16646835858, 24851001712, 36469592898
Offset: 1

Views

Author

Hugo Pfoertner, Feb 08 2005

Keywords

Crossrefs

Cf. all triangles in lattice cube A103426; special triangles in lattice cube: A103428, A103429, A103499, A103500, A103501; A103158 tetrahedra in lattice cube.

A103499 (1/12)*number of right triangles that can be formed from the points of an (n+1)X(n+1)X(n+1) lattice cube.

Original entry on oeis.org

4, 113, 1026, 5273, 20170, 60906, 159798, 371262, 787640, 1550813, 2882994, 5083015, 8610474, 14032370, 22148796, 33984174, 50936912, 74600413, 107204886, 151236555, 209999748, 287230504, 387791652, 516909272, 681578384, 888990683
Offset: 1

Views

Author

Hugo Pfoertner, Feb 08 2005

Keywords

Crossrefs

Cf. all triangles in lattice cube A103426; special triangles in lattice cube: A103427, A103428, A103429, A103500, A103501; A103158 tetrahedra in lattice cube.

A103500 (1/4)*number of non-degenerate isosceles triangles that can be formed from the points of an (n+1)X(n+1)X(n+1) lattice cube.

Original entry on oeis.org

8, 194, 1610, 8407, 32002, 98191, 254286, 596715, 1267128, 2506286, 4646666, 8239907, 13945450, 22784572, 35977540, 55368882, 82940928, 121737174, 174853556, 247158893, 343382312, 470183200, 634503574, 847118119, 1117272006
Offset: 1

Views

Author

Hugo Pfoertner, Feb 08 2005

Keywords

Crossrefs

Cf. all triangles in lattice cube A103426; special triangles in lattice cube: A103427, A103428, A103429, A103499, A103501; A103158 tetrahedra in lattice cube.

A190019 Number of acute triangles on an n X n grid (or geoboard).

Original entry on oeis.org

0, 0, 8, 80, 404, 1392, 3880, 9208, 19536, 38096, 69288, 119224, 196036, 310008, 474336, 705328, 1023216, 1451904, 2020232, 2762848, 3719420, 4937200, 6469424, 8378184, 10734664, 13618168, 17119288, 21338760, 26390452, 32400592, 39508656, 47870200, 57655752
Offset: 1

Views

Author

Martin Renner, May 04 2011

Keywords

Comments

Place all bounding boxes of A280653 that will fit into the n X n grid in all possible positions, and the proper rectangles in two orientations: a(n) = Sum_{i=1..n} Sum_{j=1..i} k * (n-i+1) * (n-j+1) * A280653(i,j) where k=1 when i=j and k=2 otherwise. - Lars Blomberg, Feb 26 2017
According to Langford (p. 243), the leading order is (53/150-Pi/40)*C(n^2,3). See A093072. - Michael R Peake, Jan 15 2021

Crossrefs

Cf. A103429 (analogous problem on a 3-dimensional grid).

Formula

a(n) = A045996(n) - A077435(n) - A190020(n).

Extensions

Extended by Ray Chandler, May 04 2011
More terms from Lars Blomberg, Feb 26 2017
Showing 1-8 of 8 results.