cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A280653 Triangle read by rows: T(n,k), n>=k>=1, is the number of acute triangles with integer coordinates that have a bounding box of size n X k.

Original entry on oeis.org

0, 0, 0, 0, 0, 8, 0, 0, 6, 24, 0, 0, 6, 22, 40, 0, 0, 2, 20, 46, 64, 0, 0, 2, 20, 44, 70, 96, 0, 0, 2, 8, 42, 76, 98, 136, 0, 0, 2, 8, 34, 74, 104, 138, 176, 0, 0, 2, 8, 22, 72, 110, 148, 186, 208, 0, 0, 2, 4, 18, 56, 112, 146, 188, 234, 264, 0, 0, 2, 4, 18
Offset: 1

Views

Author

Lars Blomberg, Feb 25 2017

Keywords

Comments

It appears that the main diagonal is 8*A014811.

Examples

			Triangle begins:
0
0,0
0,0,8
0,0,6,24
0,0,6,22,40
0,0,2,20,46,64
0,0,2,20,44,70,96
0,0,2,8,42,76,98,136
0,0,2,8,34,74,104,138,176
0,0,2,8,22,72,110,148,186,208
0,0,2,4,18,56,112,146,188,234,264
0,0,2,4,18,44,94,152,198,244,286,328
0,0,2,4,18,32,86,150,196,254,296,342,392
-----
For n=3, k=3:
o.o   o..   o..   .o.   .o.   .o.   ..o   ..o
...   ..o   ..o   o..   ..o   ...   o..   o..
.o.   o..   .o.   ..o   o..   o.o   .o.   ..o
so T(3,3)=8
-----
For n=4, k=3:
o..o   o..o   o...   .o..   ..o.   ...o
....   ....   ...o   ....   ....   o...
.o..   ..o.   o...   o..o   o..o   ...o
so T(4,3)=6
-----
For n=6, k=3:
o.....   .....o
.....o   o.....
o.....   .....o
so T(6,3)=2
		

Crossrefs

Cf. A190019.
See A279415 for right isosceles triangles.
See A280639 for obtuse isosceles triangles.
See A279418 for acute isosceles triangles.
See A279413 for all isosceles triangles.
See A279433 for all right triangles.
See A280652 for all obtuse triangles.
See A279432 for all triangles.

A103429 (1/4)*number of acute triangles that can be formed from the points of an (n+1)X(n+1)X(n+1) lattice cube.

Original entry on oeis.org

2, 194, 3434, 29356, 162190, 679654, 2323878, 6839595, 17909922, 42675551, 94125356, 194693240, 381214450, 712191373, 1277323894, 2210486280, 3706015236, 6040816887, 9601083812, 14916225896, 22701123860, 33905935285
Offset: 1

Views

Author

Hugo Pfoertner, Feb 08 2005

Keywords

Crossrefs

Cf. all triangles in lattice cube A103426; special triangles in lattice cube: A103427, A103428, A103499, A103500, A103501; A103158 tetrahedra in lattice cube.
Cf. A190019 (analogous 2-dimensional problem).

A190020 Number of obtuse triangles on an n X n grid (or geoboard).

Original entry on oeis.org

0, 0, 24, 236, 1148, 3932, 10760, 25392, 53576, 103824, 188104, 322852, 529116, 835028, 1275360, 1893496, 2742208, 3886568, 5402448, 7381316, 9928860, 13168484, 17243896, 22319864, 28579720, 36237928, 45532720, 56732668
Offset: 1

Views

Author

Martin Renner, May 04 2011

Keywords

Comments

Place all bounding boxes of A280652 that will fit into the n X n grid in all possible positions, and the proper rectangles in two orientations: a(n) = Sum_{i=1..n} Sum_{j=1..i} k * (n-i+1) * (n-j+1) * A280652(i,j) where k=1 when i=j and k=2 otherwise. - Lars Blomberg, Mar 02 2017
According to Langford (p. 243), the leading order is (97/150 + Pi/40)*C(n^2,3). See A093072. - Michael R Peake, Jan 15 2021

Crossrefs

Formula

a(n) = A045996(n) - A077435(n) - A190019(n).

Extensions

Extended by Ray Chandler, May 04 2011

A241224 Number of acute triangles on a centered hexagonal grid of size n.

Original entry on oeis.org

0, 8, 204, 1788, 8690, 30360, 85194, 205394, 441876, 870912, 1601708, 2783574, 4616220, 7358312, 11339430, 16972182, 24763604, 35328426, 49405944, 67873484, 91762128, 122276784
Offset: 1

Views

Author

Martin Renner, Apr 17 2014

Keywords

Comments

A centered hexagonal grid of size n is a grid with A003215(n-1) points forming a hexagonal lattice.

Examples

			For n = 2 the eight acute triangles are the following:
/. *     * *     * .     . .     . .     . .     * .     . *
. * *   . * .   * * .   * * .   . * .   . * *   . . *   * . .
\. .     . .     . .     * .     * *     . *     * .     . *
		

Crossrefs

Formula

a(n) = A241223(n) - A241225(n) - A241226(n).

Extensions

a(7) from Martin Renner, May 31 2014
a(8)-a(22) from Giovanni Resta, May 31 2014

A341942 Decimal expansion of (388 + 15*Pi)/(212 - 15*Pi).

Original entry on oeis.org

2, 6, 3, 9, 0, 9, 6, 0, 4, 1, 7, 8, 6, 6, 4, 8, 3, 2, 0, 5, 3, 0, 8, 8, 8, 9, 7, 5, 5, 8, 2, 5, 3, 7, 1, 9, 1, 5, 0, 9, 2, 0, 6, 7, 4, 8, 6, 2, 2, 9, 7, 4, 8, 4, 9, 0, 7, 9, 8, 2, 3, 3, 1, 5, 3, 3, 4, 0, 0, 2, 6, 9, 6, 2, 9, 3, 8, 1, 9, 6, 9, 4, 3, 8, 0, 6, 7, 7, 6, 1, 6, 3, 0, 7, 4, 1, 0, 0, 2, 0, 2, 1, 2, 0, 2
Offset: 1

Views

Author

Peter Kagey, Feb 24 2021

Keywords

Comments

The constant is equal to lim_{n -> oo} A190020(n)/A190019(n), which is the ratio of the probability of an obtuse triangle to an acute triangle, when all three vertices are drawn uniformly at random in a square.

Examples

			2.6390960417866483205308889755825371915092...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(388 + 15*Pi)/(212 - 15*Pi), 10, 100][[1]]
  • PARI
    (388 + 15*Pi)/(212 - 15*Pi) \\ Michel Marcus, Feb 25 2021
Showing 1-5 of 5 results.