A350836 Numbers k such that A103168(k) = A340592(k).
1, 2, 3, 5, 7, 11, 14, 50, 101, 131, 151, 181, 191, 194, 313, 353, 373, 383, 712, 727, 757, 762, 787, 797, 919, 929, 1100, 1994, 2701, 4959, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741, 15451, 15551, 16061, 16361, 16561, 16661, 17471, 17971, 18181
Offset: 1
Examples
a(7) = 14 is a term because A103168(14) = 41 mod 14 = 13 and A340592(14) = 27 mod 14 = 13.
Links
- Robert Israel, Table of n, a(n) for n = 1..2200
Programs
-
Maple
revdigs:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: f:= proc(n) local L,p,i,r; L:= sort(map(t -> t[1]$t[2],ifactors(n)[2])); r:= L[1]; for i from 2 to nops(L) do r:= r*10^(1+max(0,ilog10(L[i])))+L[i] od; r end proc: f(1):= 1: select(n -> (f(n) - revdigs(n)) mod n = 0, [$1..20000]);
-
Python
from sympy import factorint def A103168(n): return int(str(n)[::-1])%n def A340592(n): if n == 1: return 0 return int("".join(str(f) for f in factorint(n, multiple=True)))%n def ok(n): return A103168(n) == A340592(n) print([k for k in range(1, 20000) if ok(k)]) # Michael S. Branicky, Jan 18 2022
Comments