A103194 LAH transform of squares.
0, 1, 6, 39, 292, 2505, 24306, 263431, 3154824, 41368977, 589410910, 9064804551, 149641946796, 2638693215769, 49490245341642, 983607047803815, 20646947498718736, 456392479671188001, 10595402429677269174, 257723100178182605287, 6553958557721713088820
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 132.
- N. J. A. Sloane, Transforms
Programs
-
Maple
with(combstruct): SetSeqSetL := [T, {T=Set(S), S=Sequence(U, card >= 1), U=Set(Z, card=1)}, labeled]: seq(k*count(SetSeqSetL, size=k), k=0..18); # Zerinvary Lajos, Jun 06 2007 a := n -> n!*hypergeom([2, 1-n], [1, 1], -1): seq(simplify(a(n)),n=0..20); # Peter Luschny, Mar 30 2015
-
Mathematica
nn = 20; a = 1/(1 - x); ay = 1/(1 - y x); D[Range[0, nn]! CoefficientList[ Series[Exp[a x] ay, {x, 0, nn}], x], y] /. y -> 1 (* Geoffrey Critzer, Feb 11 2012 *)
Formula
a(n) = Sum_{k=0..n} (n!/k!)*binomial(n-1, k-1)*k^2.
E.g.f.: x/(1-x)^2*exp(x/(1-x)).
Recurrence: (n-1)*a(n) - n*(2*n-1)*a(n-1) + n*(n-1)^2*a(n-2) = 0.
a(n) = n*A000262(n). - Vladeta Jovovic, Mar 20 2005
a(n) ~ n! * exp(-1/2 + 2*sqrt(n))*n^(1/4)/(2*sqrt(Pi)). - Vaclav Kotesovec, Aug 13 2013
a(n) = n!*hypergeom([2, 1-n], [1, 1], -1). - Peter Luschny, Mar 30 2015
a(n) = Sum_{k=1..n} k*(n-k)!*binomial(n,k)^2. - Ridouane Oudra, Jun 17 2025
Comments