cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103260 Number of partitions of 2n prime to 3 with all odd parts occurring with multiplicity 2. The even parts occur with multiplicity 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 6, 8, 10, 10, 12, 16, 22, 28, 32, 36, 42, 52, 66, 80, 92, 104, 120, 144, 174, 206, 236, 266, 304, 356, 420, 488, 554, 624, 708, 816, 946, 1084, 1224, 1372, 1548, 1764, 2016, 2288, 2568, 2868, 3216, 3632, 4110, 4626, 5166, 5748, 6412, 7188
Offset: 0

Views

Author

Noureddine Chair, Feb 15 2005

Keywords

Comments

Convolution of A098884 and A003105. [corrected by Vaclav Kotesovec, Feb 07 2021]
Also equal to the number of overpartitions of n into parts congruent to 1 or 5 modulo 6. - Jeremy Lovejoy, Nov 28 2024

Examples

			E.g. a(7)=8 because 14=10+4=10+2+1+1=8+4+2=8+4+1+1=7+7=5+5+4=5+5+2+1+1.
		

Crossrefs

Programs

  • Maple
    series(product(((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))),k=1..100),x=0,100);
    # alternative program:
    with(gfun): series( add(x^(n*(3*n-2)), n = -6..6)/add((-1)^n*x^(n*(3*n-2)), n = -6..6), x, 100): seriestolist(%); # Peter Bala, Feb 05 2021
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)

Formula

G.f.: (Theta_4(0, x^2)*theta_4(0, x^3))/(theta_4(0, x)*theta_4(0, x^(6))) = Product_{k>0}((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))).
Euler transform of period 12 sequence [2, -1, 0, 0, 2, 0, 2, 0, 0, -1, 2, 0, ...]. - Vladeta Jovovic, Feb 17 2005
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 01 2015
G.f.: f(x,x^5)/f(-x,-x^5) = ( Sum_{n = -oo..oo} x^(n*(3*n-2)) )/( Sum_{n = -oo..oo} (-1)^n*x^(n*(3*n-2)) ), where f(a,b) = Sum_{n = -oo..oo} a^(n*(n+1)/2)*b^(n*(n-1)/2) is Ramanujan's 2-variable theta function. Cf. A080054 and A098151. - Peter Bala, Feb 05 2021

Extensions

Example corrected by Vaclav Kotesovec, Sep 01 2015