A103376 a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = a(8) = a(9) = 1 and for n>9: a(n) = a(n-8) + a(n-9).
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 16, 16, 17, 21, 27, 31, 32, 32, 32, 32, 33, 38, 48, 58, 63, 64, 64, 64, 65, 71, 86, 106, 121, 127, 128, 128, 129, 136, 157, 192, 227, 248, 255, 256, 257, 265, 293
Offset: 1
Examples
a(93) = 1200 because a(93) = a(93-8) + a(93-9) = a(85) + a(84) = 642 + 558.
References
- Zanten, A. J. van, "The golden ratio in the arts of painting, building and mathematics", Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.
Links
- J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [The hal link does not always work. - _N. J. A. Sloane_, Feb 19 2025]
- J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [Local copy with annotations and a correction from _N. J. A. Sloane_, Feb 19 2025]
- Richard Padovan, Dom Hans van der Laan and the Plastic Number.
- E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand., 4 (1956) 287-302.
- J. Shallit, A generalization of automatic sequences, Theoretical Computer Science, 61 (1988), 1-16.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1,1).
Programs
-
Mathematica
k = 8; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 76] LinearRecurrence[{0,0,0,0,0,0,0,1,1},{1,1,1,1,1,1,1,1,1},80] (* Harvey P. Dale, May 07 2015 *)
-
PARI
a(n)=([0,1,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0; 0,0,0,0,1,0,0,0,0; 0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,1; 1,1,0,0,0,0,0,0,0]^(n-1)*[1;1;1;1;1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
Formula
G.f.: x*(1+x)*(1+x^2)*(1+x^4)/(1-x^8-x^9). - R. J. Mathar, Dec 14 2009
a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=1, a(7)=1, a(8)=1, a(9)=1, a(n)=a(n-8)+a(n-9). - Harvey P. Dale, May 07 2015
Extensions
Edited by Ray Chandler, Feb 10 2005
Comments