cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A103386 Primes in A103376.

Original entry on oeis.org

2, 3, 5, 7, 17, 31, 71, 127, 157, 227, 257, 293, 349, 419, 503, 65657, 152833, 172297, 11229341, 12584983, 26532901, 31220807, 1164893671, 1217349652999, 2346608054761, 8116583338373, 53091879496979, 9758833144565411
Offset: 1

Views

Author

Jonathan Vos Post, Feb 05 2005

Keywords

Comments

Intersection of A103376 with A000040.

Examples

			7 is in this sequence because A103376(27) = 7, which is prime.
		

Crossrefs

Programs

  • Mathematica
    k = 8; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Union[Select[Array[a, 500], PrimeQ]]

Extensions

Edited and extended by Ray Chandler, Feb 10 2005

A103396 Semiprimes in A103376.

Original entry on oeis.org

4, 9, 15, 21, 33, 38, 58, 65, 86, 106, 121, 129, 265, 511, 2038, 2059, 4097, 4174, 7894, 16021, 19857, 31313, 32419, 33238, 37711, 116197, 196609, 220937, 262978, 273926, 955743, 34826059, 64229819, 67835071, 77834009, 497049562, 4370946037
Offset: 1

Views

Author

Jonathan Vos Post, Feb 05 2005

Keywords

Comments

Intersection of A103376 with A001358.

Crossrefs

Programs

  • Mathematica
    SemiprimeQ[n_] := Plus @@ FactorInteger[n][[All, 2]] == 2; k = 8; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Union[Select[Array[a, 280], SemiprimeQ]]
    Union[Select[LinearRecurrence[{0,0,0,0,0,0,0,1,1},{1,1,1,1,1,1,1,1,1},300],PrimeOmega[#]==2&]] (* Harvey P. Dale, May 07 2015 *)

Extensions

Edited and extended by Ray Chandler, Feb 10 2005

A103373 a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = 1 and for n>6: a(n) = a(n-5) + a(n-6).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 7, 8, 8, 8, 9, 12, 15, 16, 16, 17, 21, 27, 31, 32, 33, 38, 48, 58, 63, 65, 71, 86, 106, 121, 128, 136, 157, 192, 227, 249, 264, 293, 349, 419, 476, 513, 557, 642, 768, 895, 989, 1070, 1199, 1410, 1663, 1884, 2059, 2269
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

k=5 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1) and k=4 case is A103372.
The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1) and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]).
For this k=5 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^6 - x - 1 = 0. This is the real constant 1.1347241384015194926054460545064728402796672263828014859251495516682....
The sequence of prime values in this k=5 case is A103383; the sequence of semiprime values in this k=5 case is A103393.

Examples

			a(22) = 9 because a(22) = a(22-5) + a(22-6) = a(17) + a(16) = 5 + 4 = 9.
		

References

  • Zanten, A. J. van, "The golden ratio in the arts of painting, building and mathematics", Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    k = 5; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 65]
    RecurrenceTable[{a[n] == a[n - 5] + a[n - 6], a[1] == a[2] == a[3] == a[4] == a[5] == a[6] == 1}, a, {n, 65}] (* or *)
    Rest@ CoefficientList[Series[-x (1 + x + x^2 + x^3 + x^4)/(-1 + x^5 + x^6), {x, 0, 65}], x] (* Michael De Vlieger, Oct 03 2016 *)
    LinearRecurrence[{0,0,0,0,1,1},{1,1,1,1,1,1},70] (* Harvey P. Dale, Jul 20 2019 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; 1,1,0,0,0,0]^(n-1)*[1;1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • PARI
    x='x+O('x^50); Vec(x*(1+x+x^2+x^3+x^4)/(1-x^5-x^6 )) \\ G. C. Greubel, May 01 2017

Formula

G.f.: x*(1+x+x^2+x^3+x^4) / (1-x^5-x^6 ). - R. J. Mathar, Aug 26 2011

Extensions

Edited by Ray Chandler and Robert G. Wilson v, Feb 06 2005

A103374 a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = 1 and for n>7: a(n) = a(n-6) + a(n-7).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 17, 21, 27, 31, 32, 32, 33, 38, 48, 58, 63, 64, 65, 71, 86, 106, 121, 127, 129, 136, 157, 192, 227, 248, 256, 265, 293, 349, 419, 475, 504, 521, 558, 642, 768, 894, 979, 1025, 1079
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

k=6 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1), k=4 case is A103372 and k=5 case is A103373.
The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1) and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]).
For this k=6 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^7 - x - 1 = 0. This is the real constant 1.1127756842787... (see A230160).
The sequence of prime values in this k=6 case is A103384; the sequence of semiprime values in this k=6 case is A103394.

Examples

			a(32) = 17 because a(32) = a(32-6) + a(32-7) = a(26) + a(25) = 9 + 8 = 17.
		

References

  • Zanten, A. J. van, "The golden ratio in the arts of painting, building and mathematics", Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    k = 6; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 70]
    RecurrenceTable[{a[n] == a[n - 6] + a[n - 7], a[1] == a[2] == a[3] == a[4] == a[5] == a[6] == a[7] == 1}, a, {n, 70}] (* or *)
    Rest@ CoefficientList[Series[-x (1 + x) (1 + x + x^2) (x^2 - x + 1)/(-1 + x^6 + x^7), {x, 0, 70}], x] (* Michael De Vlieger, Oct 03 2016 *)
    LinearRecurrence[{0,0,0,0,0,1,1},{1,1,1,1,1,1,1},80] (* Harvey P. Dale, Sep 02 2024 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 1,1,0,0,0,0,0]^(n-1)*[1;1;1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • PARI
    x='x+O('x^50); Vec(x*(1+x)*(1+x+x^2)*(x^2-x+1)/(1-x^6-x^7)) \\ G. C. Greubel, May 01 2017

Formula

G.f.: x*(1+x)*(1+x+x^2)*(x^2-x+1) / ( 1-x^6-x^7 ). - R. J. Mathar, Aug 26 2011

Extensions

Edited by Ray Chandler and Robert G. Wilson v, Feb 06 2005

A103377 a(1)=a(2)=...=a(10)=1, a(n)=a(n-9)+a(n-10).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 16, 16, 16, 17, 21, 27, 31, 32, 32, 32, 32, 32, 33, 38, 48, 58, 63, 64, 64, 64, 64, 65, 71, 86, 106, 121, 127, 128, 128, 128, 129, 136, 157, 192, 227
Offset: 1

Views

Author

Jonathan Vos Post, Feb 15 2005

Keywords

Comments

k=9 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1), k=4 case is A103372, k=5 case is A103373, k=6 case is A103374, k=7 case is A103375, k=8 case is A103376, k=10 case is A103378 and k=11 case is A103379. The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1)= 1 and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]). For this k=9 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^10 - x - 1 = 0. This is the real constant (to 50 digits accuracy): 1.0757660660868371580595995241652758206925302476392 = A230163. Note that x = (1 + x)^(1/10) = (1 + (1 + (1 + ...)^(1/10))^(1/10))^(1/10). The sequence of prime values in this k=9 case is A103387; The sequence of semiprime values in this k=9 case is A103397.
In analogy to the Fibonacci sequence, one might prefer to start this sequence with offset 0. - M. F. Hasler, Sep 19 2015

Examples

			a(83) = 257 because a(83) = a(83-9) + a(83-10). a(74) + a(73) = 129 + 128. This sequence has as elements 5, 17 and 257, which are all Fermat Primes.
		

References

  • A. J. van Zanten, The golden ratio in the arts of painting, building and mathematics, Nieuw Archief voor Wiskunde, vol 17 no 2 (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 90] (* Charles R Greathouse IV, Jan 11 2013 *)
  • PARI
    Vec((1+x+x^2)*(1+x^3+x^6)/(1-x^9-x^10)+O(x^99)) \\ Charles R Greathouse IV, Jan 11 2013

Formula

a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = a(8) = a(9) = a(10) = 1 and for n>10: a(n) = a(n-9) + a(n-10).
O.g.f.: -x*(x^2+x+1)*(x^6+x^3+1)/(-1+x^9+x^10). - R. J. Mathar, May 02 2008

Extensions

Edited by R. J. Mathar, May 02 2008
Edited by M. F. Hasler, Sep 19 2015

A103375 a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = a(8) = 1 and for n>8: a(n) = a(n-7) + a(n-8).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 16, 17, 21, 27, 31, 32, 32, 32, 33, 38, 48, 58, 63, 64, 64, 65, 71, 86, 106, 121, 127, 128, 129, 136, 157, 192, 227, 248, 255, 257, 265, 293, 349, 419, 475, 503, 512
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

k=7 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1), k=4 case is A103372, k=5 case is A103373 and k=6 case is A103374.
The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1) and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]).
For this k=7 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^8 - x - 1 = 0. This is the real constant 1.09698155779855981790827896716753708959253010821278671381232885124855898059....
The sequence of prime values in this k=7 case is A103385; the sequence of semiprime values in this k=7 case is A103395.

Examples

			a(30) = 12 because a(30) = a(30-7) + a(30-8) = a(24) + a(23) = 7 + 5 = 12.
		

References

  • Zanten, A. J. van, "The golden ratio in the arts of painting, building and mathematics", Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    k = 7; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 73]
    LinearRecurrence[{0,0,0,0,0,0,1,1},{1,1,1,1,1,1,1,1},80]
  • PARI
    a(n)=([0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0; 0,0,0,1,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,1; 1,1,0,0,0,0,0,0]^(n-1)*[1;1;1;1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: -x*(1+x+x^2+x^3+x^4+x^5+x^6)/(-1+x^7+x^8). - R. J. Mathar, Dec 14 2009

Extensions

Edited by Ray Chandler and Robert G. Wilson v, Feb 06 2005
Corrected (one more 8 inserted) by R. J. Mathar, Dec 14 2009

A152846 Triangle read by rows, A007318 rows repeated eight times .

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2008

Keywords

Comments

Diagonal sums : A103376 .

Examples

			Triangle begins : 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1,1 ; 1,1 ; 1,1 ; 1,1 ; 1,1 ; 1,1 ; 1,1 ; 1,1 ; 1,2,1 ; 1,2,1 ; 1,2,1 ; 1,2,1 ; 1,2,1 ; 1,2,1 ; 1,2,1 ; 1,2,1 ; 1,3,3,1 ; ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[#, {8}] & /@ Table[Binomial[n, k], {n, 0, 10}, {k, 0, n}]] (* G. C. Greubel, May 03 2017 *)
Showing 1-7 of 7 results.