A103388 Primes in A103378.
2, 3, 5, 7, 17, 31, 71, 127, 157, 227, 257, 293, 349, 419, 503, 32299, 33343, 72421, 80429, 134269, 140473, 252761, 2499061, 201329923, 607488611, 1005428989, 2920552289, 8185638173, 10676478541, 14058719281, 15985335181, 34020175663, 159315910211, 1448256661853
Offset: 1
Programs
-
Maple
A103378 := proc(n) option remember ; if n <= 11 then 1; else procname(n-10)+procname(n-11) ; fi; end: isA103378 := proc(n) option remember ; local i ; for i from 1 do if A103378(i) = n then RETURN(true) ; elif A103378(i) > n then RETURN(false) ; fi; od: end: A103388 := proc(n) option remember ; local a; if n = 1 then 2; else a := nextprime(procname(n-1)) ; while true do if isA103378(a) then RETURN(a) ; fi; a := nextprime(a) ; od: fi; end: for n from 1 to 37 do printf("%d, ",A103388(n)) ; od: # R. J. Mathar, Aug 30 2008
-
Mathematica
Clear[a]; k=10; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103387=Union[Select[Array[a, 1000], PrimeQ]] (* See A103377 and A103397 for code related to those. - M. F. Hasler, Sep 19 2015, . *)
-
PARI
{a=vector(m=10, n, 1); L=0; for(n=m, 10^5, isprime(a[i=n%m+1]+=a[(n+1)%m+1]) && LM. F. Hasler, Sep 19 2015
Extensions
Corrected from a(16) on by R. J. Mathar, Aug 30 2008
Edited and more terms added by M. F. Hasler, Sep 19 2015
Comments