cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A103372 a(1) = a(2) = a(3) = a(4) = a(5) = 1 and for n>5: a(n) = a(n-4) + a(n-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 7, 8, 8, 9, 12, 15, 16, 17, 21, 27, 31, 33, 38, 48, 58, 64, 71, 86, 106, 122, 135, 157, 192, 228, 257, 292, 349, 420, 485, 549, 641, 769, 905, 1034, 1190, 1410, 1674, 1939, 2224, 2600, 3084, 3613, 4163, 4824, 5684, 6697, 7776
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

k=4 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1) and k=3 case is A079398 (offset so as to begin 1,1,1,1).
The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1) and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]).
For this k=4 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the irreducible characteristic polynomial: x^5 - x - 1 = 0, A160155.
The sequence of prime values in this k=4 case is A103382; The sequence of semiprime values in this k=4 case is A103392.

Examples

			a(14) = 5 because a(14) = a(14-4) + a(14-5) = a(10) + a(9) = 3 + 2 = 5.
		

References

  • Zanten, A. J. van, The golden ratio in the arts of painting, building and mathematics, Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    k = 4; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 61]
    LinearRecurrence[{0,0,0,1,1},{1,1,1,1,1},70] (* Harvey P. Dale, Apr 22 2015 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,1,0,0,0]^(n-1)*[1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f. -x*(1+x)*(1+x^2) / ( -1+x^4+x^5 ). - R. J. Mathar, Aug 26 2011
a(n) = A124789(n-2)+A124798(n-1). - R. J. Mathar, Jun 30 2020

Extensions

Edited by Ray Chandler and Robert G. Wilson v, Feb 06 2005

A103382 Primes in A103372.

Original entry on oeis.org

2, 3, 5, 7, 17, 31, 71, 157, 257, 349, 641, 769, 3613, 16763, 233417, 9540317, 7391145211, 139697883473, 163069191377, 562142600387, 108169189705333, 1285424246556809, 1050111983810669984101, 17940124369540827523058309
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

Intersection of A103372 with A000040.

Examples

			233417 is an element of this sequence because A103372(83) = 233417.
		

Crossrefs

Programs

  • Mathematica
    k = 4; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Union[Select[Array[a, 400], PrimeQ]]
    Select[LinearRecurrence[{0,0,0,1,1},{1,1,1,1,1},500],PrimeQ] // Union (* Harvey P. Dale, May 30 2020 *)

Extensions

Edited and extended by Ray Chandler and Robert G. Wilson v, Feb 06 2005

A103393 Semiprimes in A103373.

Original entry on oeis.org

4, 9, 15, 21, 33, 38, 58, 65, 86, 106, 121, 249, 895, 989, 1199, 2059, 3073, 9206, 12302, 19766, 33238, 63109, 197459, 252982, 283942, 477931, 691357, 4598261, 8671301, 9819097, 11176233, 51113687, 205150267, 232797043, 496450043, 562358905
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

Intersection of A103373 with A001358.

Examples

			63109 is an element of this sequence because A103373(91) = 63109 and 63109 is semiprime because 63109 = 223 * 283 where both 223 and 283 are primes.
		

Crossrefs

Programs

  • Mathematica
    SemiprimeQ[n_] := Plus @@ FactorInteger[n][[All, 2]] == 2; k = 5; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Union[Select[Array[a, 170], SemiprimeQ]]
    Select[LinearRecurrence[{0,0,0,0,1,1},{1,1,1,1,1,1},200],PrimeOmega[ #] == 2&]//Union (* Harvey P. Dale, Jul 20 2019 *)

Extensions

Edited and extended by Ray Chandler and Robert G. Wilson v, Feb 06 2005

A103394 Semiprimes in A103374.

Original entry on oeis.org

4, 9, 15, 21, 33, 38, 58, 65, 86, 106, 121, 129, 265, 979, 1079, 2279, 7985, 8491, 14019, 15397, 37606, 61289, 71845, 117013, 127401, 196763, 221905, 244414, 265358, 290111, 466319, 555469, 1065241, 1672598, 4276487, 4712791, 5266246, 8178897
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Examples

			61289 is an element of this sequence because A103374(107) = 61289 and 61289 is semiprime because 61289 = 167 * 367 where both 167 and 367 are primes.
		

Crossrefs

Intersection of A103374 with A001358.

Programs

  • Mathematica
    SemiprimeQ[n_] := Plus @@ FactorInteger[n][[All, 2]] == 2; k = 6; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Union[Select[Array[a, 160], SemiprimeQ]]
    Select[LinearRecurrence[{0,0,0,0,0,1,1},{1,1,1,1,1,1,1},200],PrimeOmega[#]==2&]//Union (* Harvey P. Dale, Sep 02 2024 *)

Extensions

Edited and extended by Ray Chandler and Robert G. Wilson v, Feb 06 2005

A103395 Semiprimes in A103375.

Original entry on oeis.org

4, 9, 15, 21, 33, 38, 58, 65, 86, 106, 121, 129, 265, 2049, 3865, 4163, 8557, 14005, 80413, 104757, 116333, 152713, 241354, 2273893, 2492909, 16432401, 31701485, 34090613, 263504954, 424792297, 1534443805, 3233454667, 10580401481
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

Intersection of A103375 with A001358.

Examples

			14005 is an element of this sequence because A103375(106) = 14005 and
14005 is semiprime because 14005 = 5 * 2801 where both 5 and 2801 are primes. It is coincidence here that 106 = 2 * 53 is also semiprime.
		

Crossrefs

Programs

  • Mathematica
    SemiprimeQ[n_] := Plus @@ FactorInteger[n][[All, 2]] == 2; k = 7; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Union[Select[Array[a, 255], SemiprimeQ]]

Extensions

Edited, corrected and extended by Ray Chandler and Robert G. Wilson v, Feb 06 2005

A103396 Semiprimes in A103376.

Original entry on oeis.org

4, 9, 15, 21, 33, 38, 58, 65, 86, 106, 121, 129, 265, 511, 2038, 2059, 4097, 4174, 7894, 16021, 19857, 31313, 32419, 33238, 37711, 116197, 196609, 220937, 262978, 273926, 955743, 34826059, 64229819, 67835071, 77834009, 497049562, 4370946037
Offset: 1

Views

Author

Jonathan Vos Post, Feb 05 2005

Keywords

Comments

Intersection of A103376 with A001358.

Crossrefs

Programs

  • Mathematica
    SemiprimeQ[n_] := Plus @@ FactorInteger[n][[All, 2]] == 2; k = 8; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Union[Select[Array[a, 280], SemiprimeQ]]
    Union[Select[LinearRecurrence[{0,0,0,0,0,0,0,1,1},{1,1,1,1,1,1,1,1,1},300],PrimeOmega[#]==2&]] (* Harvey P. Dale, May 07 2015 *)

Extensions

Edited and extended by Ray Chandler, Feb 10 2005
Showing 1-6 of 6 results.