cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A103373 a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = 1 and for n>6: a(n) = a(n-5) + a(n-6).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 7, 8, 8, 8, 9, 12, 15, 16, 16, 17, 21, 27, 31, 32, 33, 38, 48, 58, 63, 65, 71, 86, 106, 121, 128, 136, 157, 192, 227, 249, 264, 293, 349, 419, 476, 513, 557, 642, 768, 895, 989, 1070, 1199, 1410, 1663, 1884, 2059, 2269
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

k=5 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1) and k=4 case is A103372.
The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1) and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]).
For this k=5 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^6 - x - 1 = 0. This is the real constant 1.1347241384015194926054460545064728402796672263828014859251495516682....
The sequence of prime values in this k=5 case is A103383; the sequence of semiprime values in this k=5 case is A103393.

Examples

			a(22) = 9 because a(22) = a(22-5) + a(22-6) = a(17) + a(16) = 5 + 4 = 9.
		

References

  • Zanten, A. J. van, "The golden ratio in the arts of painting, building and mathematics", Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    k = 5; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 65]
    RecurrenceTable[{a[n] == a[n - 5] + a[n - 6], a[1] == a[2] == a[3] == a[4] == a[5] == a[6] == 1}, a, {n, 65}] (* or *)
    Rest@ CoefficientList[Series[-x (1 + x + x^2 + x^3 + x^4)/(-1 + x^5 + x^6), {x, 0, 65}], x] (* Michael De Vlieger, Oct 03 2016 *)
    LinearRecurrence[{0,0,0,0,1,1},{1,1,1,1,1,1},70] (* Harvey P. Dale, Jul 20 2019 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; 1,1,0,0,0,0]^(n-1)*[1;1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • PARI
    x='x+O('x^50); Vec(x*(1+x+x^2+x^3+x^4)/(1-x^5-x^6 )) \\ G. C. Greubel, May 01 2017

Formula

G.f.: x*(1+x+x^2+x^3+x^4) / (1-x^5-x^6 ). - R. J. Mathar, Aug 26 2011

Extensions

Edited by Ray Chandler and Robert G. Wilson v, Feb 06 2005

A103392 Semiprimes in A103372.

Original entry on oeis.org

4, 9, 15, 21, 33, 38, 58, 86, 106, 122, 485, 905, 1939, 4163, 6697, 12381, 14473, 22889, 107833, 170769, 370729, 687634, 804106, 1093762, 1276259, 2767999, 11140379, 15186449, 210634829, 286937249, 391048473, 532793518, 725995178, 847539571
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

Intersection of A103372 with A001358.

Examples

			276799 is an element of this sequence because A103372(99) = 276799 and 276799 is semiprime because 276799 = 31 * 8929 where both 31 and 8929 are primes.
		

Crossrefs

Programs

  • Mathematica
    SemiprimeQ[n_] := Plus @@ FactorInteger[n][[All, 2]] == 2; k = 4; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Union[Select[Array[a, 150], SemiprimeQ]]
    Union[Select[LinearRecurrence[{0,0,0,1,1},{1,1,1,1,1},150],PrimeOmega[#] == 2&]] (* Harvey P. Dale, Apr 22 2015 *)

Extensions

Edited, corrected and extended by Ray Chandler and Robert G. Wilson v, Feb 06 2005

A103383 Primes in A103373.

Original entry on oeis.org

2, 3, 5, 7, 17, 31, 71, 157, 227, 293, 349, 419, 557, 1663, 2269, 2609, 3547, 3943, 15761, 17477, 37243, 70481, 105557, 23913779, 84394837, 7057254647, 3915885721591, 4641244746324673, 5266511621347511, 565552908731370799
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

Intersection of A103373 with A000040.

Examples

			105557 is an element of this sequence because A103373(95) = 105557.
		

Crossrefs

Programs

  • Mathematica
    k = 5; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Union[Select[Array[a, 350], PrimeQ]]

Extensions

Edited and extended by Ray Chandler and Robert G. Wilson v, Feb 06 2005
Showing 1-3 of 3 results.