cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A103373 a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = 1 and for n>6: a(n) = a(n-5) + a(n-6).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 7, 8, 8, 8, 9, 12, 15, 16, 16, 17, 21, 27, 31, 32, 33, 38, 48, 58, 63, 65, 71, 86, 106, 121, 128, 136, 157, 192, 227, 249, 264, 293, 349, 419, 476, 513, 557, 642, 768, 895, 989, 1070, 1199, 1410, 1663, 1884, 2059, 2269
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

k=5 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1) and k=4 case is A103372.
The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1) and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]).
For this k=5 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^6 - x - 1 = 0. This is the real constant 1.1347241384015194926054460545064728402796672263828014859251495516682....
The sequence of prime values in this k=5 case is A103383; the sequence of semiprime values in this k=5 case is A103393.

Examples

			a(22) = 9 because a(22) = a(22-5) + a(22-6) = a(17) + a(16) = 5 + 4 = 9.
		

References

  • Zanten, A. J. van, "The golden ratio in the arts of painting, building and mathematics", Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    k = 5; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 65]
    RecurrenceTable[{a[n] == a[n - 5] + a[n - 6], a[1] == a[2] == a[3] == a[4] == a[5] == a[6] == 1}, a, {n, 65}] (* or *)
    Rest@ CoefficientList[Series[-x (1 + x + x^2 + x^3 + x^4)/(-1 + x^5 + x^6), {x, 0, 65}], x] (* Michael De Vlieger, Oct 03 2016 *)
    LinearRecurrence[{0,0,0,0,1,1},{1,1,1,1,1,1},70] (* Harvey P. Dale, Jul 20 2019 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; 1,1,0,0,0,0]^(n-1)*[1;1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • PARI
    x='x+O('x^50); Vec(x*(1+x+x^2+x^3+x^4)/(1-x^5-x^6 )) \\ G. C. Greubel, May 01 2017

Formula

G.f.: x*(1+x+x^2+x^3+x^4) / (1-x^5-x^6 ). - R. J. Mathar, Aug 26 2011

Extensions

Edited by Ray Chandler and Robert G. Wilson v, Feb 06 2005

A103382 Primes in A103372.

Original entry on oeis.org

2, 3, 5, 7, 17, 31, 71, 157, 257, 349, 641, 769, 3613, 16763, 233417, 9540317, 7391145211, 139697883473, 163069191377, 562142600387, 108169189705333, 1285424246556809, 1050111983810669984101, 17940124369540827523058309
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

Intersection of A103372 with A000040.

Examples

			233417 is an element of this sequence because A103372(83) = 233417.
		

Crossrefs

Programs

  • Mathematica
    k = 4; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Union[Select[Array[a, 400], PrimeQ]]
    Select[LinearRecurrence[{0,0,0,1,1},{1,1,1,1,1},500],PrimeQ] // Union (* Harvey P. Dale, May 30 2020 *)

Extensions

Edited and extended by Ray Chandler and Robert G. Wilson v, Feb 06 2005

A103393 Semiprimes in A103373.

Original entry on oeis.org

4, 9, 15, 21, 33, 38, 58, 65, 86, 106, 121, 249, 895, 989, 1199, 2059, 3073, 9206, 12302, 19766, 33238, 63109, 197459, 252982, 283942, 477931, 691357, 4598261, 8671301, 9819097, 11176233, 51113687, 205150267, 232797043, 496450043, 562358905
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

Intersection of A103373 with A001358.

Examples

			63109 is an element of this sequence because A103373(91) = 63109 and 63109 is semiprime because 63109 = 223 * 283 where both 223 and 283 are primes.
		

Crossrefs

Programs

  • Mathematica
    SemiprimeQ[n_] := Plus @@ FactorInteger[n][[All, 2]] == 2; k = 5; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Union[Select[Array[a, 170], SemiprimeQ]]
    Select[LinearRecurrence[{0,0,0,0,1,1},{1,1,1,1,1,1},200],PrimeOmega[ #] == 2&]//Union (* Harvey P. Dale, Jul 20 2019 *)

Extensions

Edited and extended by Ray Chandler and Robert G. Wilson v, Feb 06 2005
Showing 1-3 of 3 results.