cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A045741 Number of edges in all noncrossing connected graphs on n nodes on a circle.

Original entry on oeis.org

1, 9, 82, 765, 7266, 69930, 679764, 6659037, 65635570, 650194974, 6467730204, 64562259762, 646399361076, 6488447895540, 65276186864232, 657998685456093, 6644370824416530, 67198463606576790, 680568874690989900
Offset: 2

Views

Author

Keywords

Examples

			a(3)=9; indeed, with vertices u, v, w, the noncrossing connected graphs are {uv,uw}, {vu, vw}, {wu, wv}, and {uv, vw, wu} with a total of 9 edges.
		

Crossrefs

Programs

  • Maple
    A045741 := proc(n) local k ; add(binomial(3*n-3,n+k)*binomial(k,n-1),k=0..2*n-3) ; end: seq(A045741(n),n=2..20) ; # R. J. Mathar, Feb 27 2008
  • Mathematica
    Table[Sum[k*Binomial[3*n - 3, n + k]*Binomial[k - 1, k - n + 1], {k, n - 1, 2*n}]/(n - 1), {n,2,50}] (* G. C. Greubel, Jan 30 2017 *)
  • PARI
    for(n=2,50, print1(sum(k=n-1,2*n, k*binomial(3*n-3,n+k)* binomial(k-1,k-n+1))/(n-1), ", ")) \\ G. C. Greubel, Jan 30 2017

Formula

a(n) = Sum_{k = n-1 .. 2*n} (k*binomial(3*n-3, n+k)*binomial(k-1, k-n+1))/(n-1).
a(n) = 1 mod 3 if n in A103457; a(n) = 0 mod 3 otherwise [Eu et al.]. - R. J. Mathar, Feb 27 2008
Recurrence: (n-2)*(n-1)*(6*n-17)*a(n) = 18*(n-2)*a(n-1) + 12*(3*n-8)*(3*n-7)*(6*n-11)*a(n-2). - Vaclav Kotesovec, Dec 29 2012
a(n) ~ (sqrt(3)-1)/sqrt(Pi) * (2^(n-5/2)*3^(3*n/2-3/2))/sqrt(n). - Vaclav Kotesovec, Dec 29 2012
A244038(n) = a(n) + A244039(n) [Gessel]. - N. J. A. Sloane, Jun 28 2014

A103462 A triangle with palindromic cubes, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 5, 4, 1, 1, 2, 9, 10, 5, 1, 1, 2, 17, 28, 17, 6, 1, 1, 2, 33, 82, 65, 26, 7, 1, 1, 2, 65, 244, 257, 126, 37, 8, 1, 1, 2, 129, 730, 1025, 626, 217, 50, 9, 1, 1, 2, 257, 2188, 4097, 3126, 1297, 344, 65, 10, 1, 1, 2, 513, 6562, 16385, 15626, 7777
Offset: 0

Views

Author

Paul Barry, Feb 07 2005

Keywords

Examples

			Rows start {1}, {1,1}, {1,2,1}, {1,2,3,1}, {1,2,5,4,1},..
		

Crossrefs

Columns include A040000, A083318, A103457, A046231, A046233, A103458, A103459, A000533. Cubes of column k are palindromic to base k, k>3 (start with column 0). Row sums are A103480. Diagonal sums are A103481.

Formula

Number triangle T(n, k)=if(k<=n, k^(n-k)+1-0^(n-k), 0); Column k has g.f. x^k(1-kx^2)/((1-x)(1-kx)).

A176666 A triangle of polynomial coefficients:p(x,n)=Sum[(2*k + 1)^n*k!*Binomial[x, k], {k, 0, n}].

Original entry on oeis.org

1, 1, 3, 1, -16, 25, 1, 588, -904, 343, 1, -35108, 65593, -36965, 6561, 1, 3541662, -7450307, 5299298, -1551461, 161051, 1, -539667860, 1239476145, -1027098387, 393094596, -70630574, 4826809, 1, 115929493398, -285126982237, 264011385389
Offset: 0

Views

Author

Roger L. Bagula, Apr 23 2010

Keywords

Comments

Row sums are:A103457;
{1, 4, 10, 28, 82, 244, 730, 2188, 6562, 19684, 59050,...}.

Examples

			{1},
{1, 3},
{1, -16, 25},
{1, 588, -904, 343},
{1, -35108, 65593, -36965, 6561},
{1, 3541662, -7450307, 5299298, -1551461, 161051},
{ 1, -539667860, 1239476145, -1027098387, 393094596, -70630574, 4826809},
{1, 115929493398, -285126982237, 264011385389, -120438105421, 28978650041, -3525298358, 170859375},
{1, -33405526460804, 86851508060145, -87619801707127, 45402414077950, -13236000326919, 2193188923598, -192758317723, 6975757441},
{1, 12439546100725062, -33876724511327305, 36619991865553925, -20936375400104384, 7018154767854372, -1426322806941012, 172905465804793, -11498169243547, 322687697779},
{1, -5815351979718349460, 16476663041157314889, -18861838035155184791, 11671607490973992658, -4358525114199083475, 1028212770824559839, -154333184246062051, 14292794059654483, -744463577761244, 16679880978201}
		

Crossrefs

Programs

  • Mathematica
    Clear[p, x, n]
    p[x_, n_] := Sum[(2*k + 1)^n*k!*Binomial[x, k], {k, 0, n}];
    Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}];
    Flatten[%]

Formula

p(x,n)=Sum[(2*k + 1)^n*k!*Binomial[x, k], {k, 0, n}];
t(n,m)=coefficients(p(x,n))
Showing 1-3 of 3 results.