cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A244038 a(n) = 4^n * binomial(3*n/2,n).

Original entry on oeis.org

1, 6, 48, 420, 3840, 36036, 344064, 3325608, 32440320, 318704100, 3148873728, 31256180280, 311452237824, 3113596420200, 31213674823680, 313672599360720, 3158823892156416, 31870058661517860, 322076161553203200, 3259691964853493400, 33034843349204336640, 335189468043077792760
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2014

Keywords

Crossrefs

Programs

  • Magma
    [Round(4^n*Gamma(3*n/2+1)/(Gamma(n+1)*Gamma(n/2+1))): n in [0..40]]; // G. C. Greubel, Aug 06 2018
  • Maple
    f1:=n->4^n*binomial(3*n/2,n); [seq(f1(n),n=0..40)];
  • Mathematica
    Table[4^n Binomial[3 n/2, n], {n, 0, 40}] (* Vincenzo Librandi, Jun 29 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 3^n * polcoeff( serreverse( x / (x+1) / 2 * sqrt((x+3) / (x+1) / 3 + x * O(x^n))), n))}; /* Michael Somos, Jan 27 2018 */
    

Formula

a(n) = A045741(n+1) + A244039(n) [Gessel].
a(n) = [x^n] 1/sqrt(1 - 4*x)^(n+2). - Ilya Gutkovskiy, Oct 10 2017
G.f. A(x) satisfies: A(x)^3 * (1 - 108*x^2) = 3*A(x) - 2. - Michael Somos, Jan 27 2018
a(n) = [x^n] ( (1 + 4*x)^(3/2) )^n. It follows that the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. - Peter Bala, Mar 05 2022
G.f.: 2/(1-2*sin(arcsin(216*x^2-1)/3)). - Vladimir Kruchinin, Oct 06 2022
G.f.: ((3^(5/6)*i + 3^(1/3))*(-18*i*z + sqrt(-324*z^2 + 3))^(1/3) - (3^(5/6)*i - 3^(1/3))*(18*i*z + sqrt(-324*z^2 + 3))^(1/3))/(2*sqrt(-324*z^2 + 3)), where i = sqrt(-1) is the imaginary unit. - Karol A. Penson, Oct 24 2024
From Seiichi Manyama, Aug 07 2025: (Start)
a(n) = Sum_{k=0..n} binomial(3*n+1,k) * binomial(2*n-k,n-k).
a(n) = [x^n] (1+x)^(3*n+1)/(1-x)^(n+1).
a(n) = [x^n] 1/((1-x) * (1-2*x))^(n+1).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n+1,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k,k) * binomial(2*n-k,n-k). (End)

A244039 a(n) = 2^(2*n-1) * ( binomial(3*n/2,n) + binomial((3*n-1)/2,n) ).

Original entry on oeis.org

1, 5, 39, 338, 3075, 28770, 274134, 2645844, 25781283, 253068530, 2498678754, 24788450076, 246889978062, 2467197059124, 24725226928140, 248396412496488, 2500825206700323, 25225687837101330, 254877697946626410, 2579123090162503500, 26133512970919973850, 265126176290618366460
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2014

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Programs

  • Magma
    [Round(2^(2*n-1)*( Gamma(3*n/2+1)/Gamma(n/2+1) + Gamma((3*n+1)/2)/Gamma((n+1)/2) )/Factorial(n)): n in [0..25]]; // G. C. Greubel, Aug 20 2019
    
  • Maple
    a := n -> 2^(2*n-1)*(binomial(3*n/2,n) + binomial((3*n-1)/2,n));
    seq(a(n), n=0..25);
  • Mathematica
    Table[2^(2n-1)*(Binomial[3n/2, n] + Binomial[(3n-1)/2, n]), {n, 0, 25}] (* Vincenzo Librandi, Jun 29 2014 *)
  • PARI
    a(n) = 2^(2*n-1)*(binomial(3*n/2, n) + binomial((3*n-1)/2, n));
    vector(25, n, n--; a(n)) \\ G. C. Greubel, Aug 20 2019
    
  • Sage
    [2^(2*n-1)*(binomial(3*n/2, n) + binomial((3*n-1)/2, n)) for n in (0..25)] # G. C. Greubel, Aug 20 2019

Formula

From Peter Bala, Mar 04 2022: (Start)
a(n) = [x^n] ( (1 + 2*x)^3/(1 + x) )^n. Cf. A091527.
a(n) = Sum_{k = 0..n} (-1)^k * 2^(n-k) * binomial(3*n,n-k) * binomial(n+k-1,k).
n*(n-1)*(6*n-11)*a(n) = - 18*(n-1)*a(n-1) + 12*(3*n-4)*(3*n-5)*(6*n-5)*a(n-2) with a(0) = 1 and a(1) = 5.
The o.g.f. A(x) = 1 + 5*x + 39*x^2 + 338*x^3 + ... is the diagonal of the bivariate rational function 1/(1 - t*(1 + 2*x)^3/(1 + x)) and hence is an algebraic function over the field of rational functions Q(x) by Stanley 1999, Theorem 6.33, p. 197.
Calculation gives (1 - 108*x^2)*A(x)^3 - (1 + 9*x)*A(x) = x.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. (End)
a(n) = 2^n*binomial(3*n, n)*hypergeom([-n, n], [2*n + 1], 1/2). - Peter Luschny, Mar 07 2022
From Seiichi Manyama, Aug 08 2025: (Start)
a(n) = Sum_{k=0..n} binomial(3*n,k) * binomial(2*n-k,n-k).
a(n) = [x^n] (1+x)^(3*n)/(1-x)^(n+1).
a(n) = [x^n] 1/((1-x)^n * (1-2*x)^(n+1)).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k,k) * binomial(2*n-k-1,n-k). (End)

A127537 Triangle read by rows: T(n,k) (n >= 2, 1 <= k <= 2n-3) is the number of non-crossing connected graphs on n nodes on a circle, having k edges. Rows are indexed 2,3,4,...; columns are indexed 0,1,2,....

Original entry on oeis.org

1, 0, 3, 1, 0, 0, 12, 9, 2, 0, 0, 0, 55, 66, 30, 5, 0, 0, 0, 0, 273, 455, 315, 105, 14, 0, 0, 0, 0, 0, 1428, 3060, 2856, 1428, 378, 42, 0, 0, 0, 0, 0, 0, 7752, 20349, 23940, 15960, 6300, 1386, 132, 0, 0, 0, 0, 0, 0, 0, 43263, 134596, 191268, 159390, 83490, 27324, 5148, 429
Offset: 2

Views

Author

Emeric Deutsch, Jan 24 2007

Keywords

Comments

Row n contains 2n-3 terms, the first n-2 of which are equal to 0.
T(n,n-1) = A001764(n-1). T(n,2n-3) = A000108(n-2) (the Catalan numbers).
T(n,k) = A089434(n,k+1-n).
Sum_{k=n-1..2n-3} k*T(n,k) = A045741(n).
Sum_{n=k..2k-2} T(n,k) = A065065(k).

Examples

			Triangle starts:
  1;
  0,  3,  1;
  0,  0, 12,  9,  2;
  0,  0,  0, 55, 66, 30,  5;
		

Crossrefs

Programs

  • Maple
    T:=(n,k)->binomial(3*n-3,n+k)*binomial(k-1,k-n+1)/(n-1): for n from 2 to 10 do seq(T(n,k),k=1..2*n-3) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := Binomial[3n - 3, n + k] Binomial[k - 1, k - n + 1]/(n - 1);
    Table[T[n, k], {n, 2, 10}, {k, 1, 2n - 3}] // Flatten (* Jean-François Alcover, Jul 29 2018 *)

Formula

T(n,k) = C(3n-3,n+k)C(k-1,k-n+1)/(n-1) (n >= 2, 0 <= k <= 2n-3).
G.f.: G=G(t,z) satisfies tG^3 + tG^2 - z(1+2t)G + z^2*(1+t) = 0.

Extensions

Keyword tabl changed to tabf by Michel Marcus, Apr 09 2013

A206306 Riordan array (1, x/(1-3*x+2*x^2)).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 7, 6, 1, 0, 15, 23, 9, 1, 0, 31, 72, 48, 12, 1, 0, 63, 201, 198, 82, 15, 1, 0, 127, 522, 699, 420, 125, 18, 1, 0, 255, 1291, 2223, 1795, 765, 177, 21, 1, 0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 06 2012

Keywords

Comments

The convolution triangle of the Mersenne numbers A000225. - Peter Luschny, Oct 09 2022

Examples

			Triangle begins:
  1;
  0,    1;
  0,    3,    1;
  0,    7,    6,     1;
  0,   15,   23,     9,     1;
  0,   31,   72,    48,    12,     1;
  0,   63,  201,   198,    82,    15,    1;
  0,  127,  522,   699,   420,   125,   18,    1;
  0,  255, 1291,  2223,  1795,   765,  177,   21,   1;
  0,  511, 3084,  6562,  6768,  3840, 1260,  238,  24,  1;
  0, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27,  1;
		

Crossrefs

Programs

  • Magma
    function T(n,k) // T = A206306
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      elif k eq 0 then return 0;
      else return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 20 2022
    
  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==0, 0, 3*T[n- 1, k] +T[n-1, k-1] -2*T[n-2, k]]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 20 2022 *)
  • SageMath
    def T(n,k): # T = A206306
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        elif (k==0): return 0
        else: return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 20 2022

Formula

Triangle T(n,k), read by rows, given by (0, 3, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Diagonals sums are even-indexed Fibonacci numbers.
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A204089(n), A204091(n) for x = 0, 1, 2 respectively.
G.f.: (1-3*x+2*x^)/(1-(3+y)*x+2*x^2).
From Philippe Deléham, Nov 17 2013; corrected Feb 13 2020: (Start)
T(n, n) = 1.
T(n+1, n) = 3n = A008585(n).
T(n+2, n) = A062725(n).
T(n,k) = 3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k), T(0,0)=T(1,1)=T(2,2)=1, T(1,0)=T(2,0)=0, T(2,1)=3, T(n,k)=0 if k<0 or if k>n. (End)
From G. C. Greubel, Dec 20 2022: (Start)
Sum_{k=0..n} (-1)^k*T(n,k) = [n=1] - A009545(n).
Sum_{k=0..n} (-2)^k*T(n,k) = [n=1] + A078020(n+1).
T(2*n, n+1) = A045741(n+2), n >= 0.
T(2*n+1, n+1) = A244038(n). (End)
Showing 1-4 of 4 results.