A244038
a(n) = 4^n * binomial(3*n/2,n).
Original entry on oeis.org
1, 6, 48, 420, 3840, 36036, 344064, 3325608, 32440320, 318704100, 3148873728, 31256180280, 311452237824, 3113596420200, 31213674823680, 313672599360720, 3158823892156416, 31870058661517860, 322076161553203200, 3259691964853493400, 33034843349204336640, 335189468043077792760
Offset: 0
-
[Round(4^n*Gamma(3*n/2+1)/(Gamma(n+1)*Gamma(n/2+1))): n in [0..40]]; // G. C. Greubel, Aug 06 2018
-
f1:=n->4^n*binomial(3*n/2,n); [seq(f1(n),n=0..40)];
-
Table[4^n Binomial[3 n/2, n], {n, 0, 40}] (* Vincenzo Librandi, Jun 29 2014 *)
-
{a(n) = if( n<1, n==0, 3^n * polcoeff( serreverse( x / (x+1) / 2 * sqrt((x+3) / (x+1) / 3 + x * O(x^n))), n))}; /* Michael Somos, Jan 27 2018 */
A244039
a(n) = 2^(2*n-1) * ( binomial(3*n/2,n) + binomial((3*n-1)/2,n) ).
Original entry on oeis.org
1, 5, 39, 338, 3075, 28770, 274134, 2645844, 25781283, 253068530, 2498678754, 24788450076, 246889978062, 2467197059124, 24725226928140, 248396412496488, 2500825206700323, 25225687837101330, 254877697946626410, 2579123090162503500, 26133512970919973850, 265126176290618366460
Offset: 0
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
-
[Round(2^(2*n-1)*( Gamma(3*n/2+1)/Gamma(n/2+1) + Gamma((3*n+1)/2)/Gamma((n+1)/2) )/Factorial(n)): n in [0..25]]; // G. C. Greubel, Aug 20 2019
-
a := n -> 2^(2*n-1)*(binomial(3*n/2,n) + binomial((3*n-1)/2,n));
seq(a(n), n=0..25);
-
Table[2^(2n-1)*(Binomial[3n/2, n] + Binomial[(3n-1)/2, n]), {n, 0, 25}] (* Vincenzo Librandi, Jun 29 2014 *)
-
a(n) = 2^(2*n-1)*(binomial(3*n/2, n) + binomial((3*n-1)/2, n));
vector(25, n, n--; a(n)) \\ G. C. Greubel, Aug 20 2019
-
[2^(2*n-1)*(binomial(3*n/2, n) + binomial((3*n-1)/2, n)) for n in (0..25)] # G. C. Greubel, Aug 20 2019
A127537
Triangle read by rows: T(n,k) (n >= 2, 1 <= k <= 2n-3) is the number of non-crossing connected graphs on n nodes on a circle, having k edges. Rows are indexed 2,3,4,...; columns are indexed 0,1,2,....
Original entry on oeis.org
1, 0, 3, 1, 0, 0, 12, 9, 2, 0, 0, 0, 55, 66, 30, 5, 0, 0, 0, 0, 273, 455, 315, 105, 14, 0, 0, 0, 0, 0, 1428, 3060, 2856, 1428, 378, 42, 0, 0, 0, 0, 0, 0, 7752, 20349, 23940, 15960, 6300, 1386, 132, 0, 0, 0, 0, 0, 0, 0, 43263, 134596, 191268, 159390, 83490, 27324, 5148, 429
Offset: 2
Triangle starts:
1;
0, 3, 1;
0, 0, 12, 9, 2;
0, 0, 0, 55, 66, 30, 5;
- C. Domb and A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358.
- C. Domb & A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358. (Annotated scanned copy)
- C. Domb & A. J. Barrett, Notes on Table 2 in "Enumeration of ladder graphs", Discrete Math. 9 (1974), 55. (Annotated scanned copy)
- P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
-
T:=(n,k)->binomial(3*n-3,n+k)*binomial(k-1,k-n+1)/(n-1): for n from 2 to 10 do seq(T(n,k),k=1..2*n-3) od; # yields sequence in triangular form
-
T[n_, k_] := Binomial[3n - 3, n + k] Binomial[k - 1, k - n + 1]/(n - 1);
Table[T[n, k], {n, 2, 10}, {k, 1, 2n - 3}] // Flatten (* Jean-François Alcover, Jul 29 2018 *)
A206306
Riordan array (1, x/(1-3*x+2*x^2)).
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 7, 6, 1, 0, 15, 23, 9, 1, 0, 31, 72, 48, 12, 1, 0, 63, 201, 198, 82, 15, 1, 0, 127, 522, 699, 420, 125, 18, 1, 0, 255, 1291, 2223, 1795, 765, 177, 21, 1, 0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 3, 1;
0, 7, 6, 1;
0, 15, 23, 9, 1;
0, 31, 72, 48, 12, 1;
0, 63, 201, 198, 82, 15, 1;
0, 127, 522, 699, 420, 125, 18, 1;
0, 255, 1291, 2223, 1795, 765, 177, 21, 1;
0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1;
0, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27, 1;
-
function T(n,k) // T = A206306
if k lt 0 or k gt n then return 0;
elif k eq n then return 1;
elif k eq 0 then return 0;
else return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k);
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 20 2022
-
# Uses function PMatrix from A357368.
PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
-
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==0, 0, 3*T[n- 1, k] +T[n-1, k-1] -2*T[n-2, k]]]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 20 2022 *)
-
def T(n,k): # T = A206306
if (k<0 or k>n): return 0
elif (k==n): return 1
elif (k==0): return 0
else: return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k)
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 20 2022
Showing 1-4 of 4 results.
Comments