cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A091527 a(n) = ((3*n)!/n!^2)*(Gamma(1+n/2)/Gamma(1+3n/2)).

Original entry on oeis.org

1, 4, 30, 256, 2310, 21504, 204204, 1966080, 19122246, 187432960, 1848483780, 18320719872, 182327718300, 1820797698048, 18236779032600, 183120225632256, 1842826521244230, 18581317012684800, 187679234340049620, 1898554215471513600, 19232182592635611060
Offset: 0

Views

Author

Michael Somos, Jan 18 2004

Keywords

Comments

Sequence terms are given by [x^n] ( (1 + x)^(k+2)/(1 - x)^k )^n for k = 1. See the crossreferences for related sequences obtained from other values of k. - Peter Bala, Sep 29 2015
Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for n >= 0. This is the case a = 1, b = 0. - Peter Bala, Aug 28 2016

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Cf. A061162(n) = a(2n), A007297, A000984 (k = 0), A001448 (k = 2), A262732 (k = 3), A211419 (k = 4), A262733 (k = 5), A211421 (k = 6), A276098, A276099.

Programs

  • Maple
    a := n -> 4^n * `if`(n<2, 1, (2*(n+1)*binomial((3*n-1)/2, n + 1))/(n-1)):
    seq(a(n), n=0..18); # Peter Luschny, Feb 03 2020
  • Mathematica
    Table[((3 n)!/n!^2) Gamma[1 + n/2]/Gamma[1 + 3 n/2], {n, 0, 18}] (* Michael De Vlieger, Oct 02 2015 *)
    Table[4^n Sum[Binomial[k - 1 + (n - 1)/2, k], {k, 0, n}], {n, 0, 18}] (* Michael De Vlieger, Aug 28 2016 *)
  • Maxima
    B(x):=(-1/3+(2/3)*sqrt(1+9*x)*sin((1/3)*asin((2+27*x+54*x^2)/2/(1+9*x)^(3/2))))/x-1;
    taylor(x*diff(B(x),x)/B(x),x,0,10); /* Vladimir Kruchinin, Oct 02 2015 */
    
  • PARI
    a(n)=4^n*sum(i=0,n,binomial(i-1+(n-1)/2,i))
    
  • PARI
    vector(30, n, sum(k=0, n, binomial(3*n-3, k)*binomial(2*n-k-3, n-k-1))) \\ Altug Alkan, Oct 04 2015
    
  • Python
    from math import factorial
    from sympy import factorial2
    def A091527(n): return int((factorial(3*n)*factorial2(n)<Chai Wah Wu, Aug 10 2023

Formula

D-finite with recurrence n*(n - 1)*a(n) = 12*(3*n - 1)*(3*n - 5)*a(n-2).
From Peter Bala, Sep 29 2015: (Start)
a(n) = Sum_{i = 0..n} binomial(3*n,i) * binomial(2*n-i-1,n-i).
a(n) = [x^n] ( (1 + x)^3/(1 - x) )^n.
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 4*x + 23*x^2 + 156*x^3 + 1162*x^4 + 9192*x^5 + ... is the o.g.f. for A007297 (but with an offset of 0). (End)
a(n) = (n+1)*A078531(n). [Barry, JIS (2011)]
G.f.: x*B'(x)/B(x), where x*B(x)+1 is g.f. of A007297. - Vladimir Kruchinin, Oct 02 2015
From Peter Bala, Aug 22 2016: (Start)
a(n) = Sum_{k = 0..floor(n/2)} binomial(4*n,n-2*k)*binomial(n+k-1,k).
O.g.f.: A(x) = Hypergeom([5/6, 1/6], [1/2], 108*x^2) + 4*x*Hypergeom([4/3, 2/3], [3/2], 108*x^2).
The o.g.f. is the diagonal of the bivariate rational function 1/(1 - t*(1 + x)^3/(1 - x)) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197. (End)
a(n) ~ 2^n*3^(3*n/2)/sqrt(2*Pi*n). - Ilya Gutkovskiy, Aug 22 2016
a(n) = 4^n*2*(n+1)*binomial((3*n-1)/2, n+1)/(n-1) for n >= 2. - Peter Luschny, Feb 03 2020
From Peter Bala, Mar 04 2022: (Start)
The o.g.f. A(x) satisfies the algebraic equation (1 - 108*x^2)*A(x)^3 - A(x) = 8*x. Cf. A244039.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for primes p >= 5 and positive integers n and k. (End)
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^n).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k-1,k) * binomial(2*n-k,n-k).
a(n) = 4^n * binomial((3*n-1)/2,n).
a(n) = [x^n] 1/(1-4*x)^((n+1)/2).
a(n) = [x^n] (1+4*x)^((3*n-1)/2). (End)

A244038 a(n) = 4^n * binomial(3*n/2,n).

Original entry on oeis.org

1, 6, 48, 420, 3840, 36036, 344064, 3325608, 32440320, 318704100, 3148873728, 31256180280, 311452237824, 3113596420200, 31213674823680, 313672599360720, 3158823892156416, 31870058661517860, 322076161553203200, 3259691964853493400, 33034843349204336640, 335189468043077792760
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2014

Keywords

Crossrefs

Programs

  • Magma
    [Round(4^n*Gamma(3*n/2+1)/(Gamma(n+1)*Gamma(n/2+1))): n in [0..40]]; // G. C. Greubel, Aug 06 2018
  • Maple
    f1:=n->4^n*binomial(3*n/2,n); [seq(f1(n),n=0..40)];
  • Mathematica
    Table[4^n Binomial[3 n/2, n], {n, 0, 40}] (* Vincenzo Librandi, Jun 29 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 3^n * polcoeff( serreverse( x / (x+1) / 2 * sqrt((x+3) / (x+1) / 3 + x * O(x^n))), n))}; /* Michael Somos, Jan 27 2018 */
    

Formula

a(n) = A045741(n+1) + A244039(n) [Gessel].
a(n) = [x^n] 1/sqrt(1 - 4*x)^(n+2). - Ilya Gutkovskiy, Oct 10 2017
G.f. A(x) satisfies: A(x)^3 * (1 - 108*x^2) = 3*A(x) - 2. - Michael Somos, Jan 27 2018
a(n) = [x^n] ( (1 + 4*x)^(3/2) )^n. It follows that the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. - Peter Bala, Mar 05 2022
G.f.: 2/(1-2*sin(arcsin(216*x^2-1)/3)). - Vladimir Kruchinin, Oct 06 2022
G.f.: ((3^(5/6)*i + 3^(1/3))*(-18*i*z + sqrt(-324*z^2 + 3))^(1/3) - (3^(5/6)*i - 3^(1/3))*(18*i*z + sqrt(-324*z^2 + 3))^(1/3))/(2*sqrt(-324*z^2 + 3)), where i = sqrt(-1) is the imaginary unit. - Karol A. Penson, Oct 24 2024
From Seiichi Manyama, Aug 07 2025: (Start)
a(n) = Sum_{k=0..n} binomial(3*n+1,k) * binomial(2*n-k,n-k).
a(n) = [x^n] (1+x)^(3*n+1)/(1-x)^(n+1).
a(n) = [x^n] 1/((1-x) * (1-2*x))^(n+1).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n+1,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k,k) * binomial(2*n-k,n-k). (End)

A045741 Number of edges in all noncrossing connected graphs on n nodes on a circle.

Original entry on oeis.org

1, 9, 82, 765, 7266, 69930, 679764, 6659037, 65635570, 650194974, 6467730204, 64562259762, 646399361076, 6488447895540, 65276186864232, 657998685456093, 6644370824416530, 67198463606576790, 680568874690989900
Offset: 2

Views

Author

Keywords

Examples

			a(3)=9; indeed, with vertices u, v, w, the noncrossing connected graphs are {uv,uw}, {vu, vw}, {wu, wv}, and {uv, vw, wu} with a total of 9 edges.
		

Crossrefs

Programs

  • Maple
    A045741 := proc(n) local k ; add(binomial(3*n-3,n+k)*binomial(k,n-1),k=0..2*n-3) ; end: seq(A045741(n),n=2..20) ; # R. J. Mathar, Feb 27 2008
  • Mathematica
    Table[Sum[k*Binomial[3*n - 3, n + k]*Binomial[k - 1, k - n + 1], {k, n - 1, 2*n}]/(n - 1), {n,2,50}] (* G. C. Greubel, Jan 30 2017 *)
  • PARI
    for(n=2,50, print1(sum(k=n-1,2*n, k*binomial(3*n-3,n+k)* binomial(k-1,k-n+1))/(n-1), ", ")) \\ G. C. Greubel, Jan 30 2017

Formula

a(n) = Sum_{k = n-1 .. 2*n} (k*binomial(3*n-3, n+k)*binomial(k-1, k-n+1))/(n-1).
a(n) = 1 mod 3 if n in A103457; a(n) = 0 mod 3 otherwise [Eu et al.]. - R. J. Mathar, Feb 27 2008
Recurrence: (n-2)*(n-1)*(6*n-17)*a(n) = 18*(n-2)*a(n-1) + 12*(3*n-8)*(3*n-7)*(6*n-11)*a(n-2). - Vaclav Kotesovec, Dec 29 2012
a(n) ~ (sqrt(3)-1)/sqrt(Pi) * (2^(n-5/2)*3^(3*n/2-3/2))/sqrt(n). - Vaclav Kotesovec, Dec 29 2012
A244038(n) = a(n) + A244039(n) [Gessel]. - N. J. A. Sloane, Jun 28 2014

A244469 a(0) = 0, thereafter, a(n) = 2^(2*n-1)*( binomial((3*n-1)/2,n) - binomial(3*n/2, n)/3 ).

Original entry on oeis.org

0, 1, 7, 58, 515, 4746, 44758, 428772, 4154403, 40599130, 399429602, 3950996556, 39255152846, 391466112324, 3916110379020, 39281346256008, 394942611929379, 3978982062756090, 40160256911157610, 405995113593507900, 4110284071450416090, 41666530928566504620, 422876855107176561780
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2014

Keywords

Crossrefs

Programs

  • Magma
    [n eq 0 select 0 else Round(2^(2*n-1)*(Gamma((3*n+1)/2)/Gamma((n+1)/2) - Gamma((3*n+2)/2)/(3*Gamma((n+2)/2)))/Factorial(n)): n in [0..30]]; // G. C. Greubel, Apr 17 2019
    
  • Maple
    f4:=n->-(2^(2*n-1)/3)*binomial(3*n/2,n) + 2^(2*n-1)*binomial((3*n-1)/2,n);
    [seq(f4(n),n=1..40)]; # then prepend f4(0)=0.
  • Mathematica
    Join[{0}, Table[-(2^(2 n - 1)/3) Binomial[3 n/2, n] + 2^(2 n - 1) Binomial[(3 n - 1)/2, n], {n, 1, 30}]] (* Vincenzo Librandi, Jun 29 2014 *)
  • PARI
    {a(n) = if(n==0,0, 2^(2*n-1)*(binomial((3*n-1)/2, n) - binomial(3*n/2, n)/3) )}; \\ G. C. Greubel, Apr 17 2019
    
  • Sage
    def a(n):
       if n==0: return 0
       else: return 2^(2*n-1)*(binomial((3*n-1)/2, n) - binomial(3*n/2, n)/3)
    [a(n) for n in (0..30)] # G. C. Greubel, Apr 17 2019

Formula

G.f.: g'(x)/g(x)-1, g(x)=(2*sqrt(9*x+1)*sin(arcsin((54*x^2+27*x+2)/(2*(9*x+1)^(3/2)))/3))/3-1/3. - Vladimir Kruchinin, Apr 14 2019
From Peter Bala, Mar 05 2022: (Start)
a(n) = (1/n)*Sum_{k = 0..n} k*2^(n-k)*binomial(n+k-1,k)*binomial(2*n-k-1,n-k) for n >= 1.
a(n) = [x^n] G(x)^n = [x^n] 1/(1 - x*C(2*x))^n, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108 and G(x) is the g.f. of A064062.
n*(n-1)*(6*n-7)*a(n) = - 18*(n-1)*a(n-1) + 12*(3*n-5)*(6*n-1)*(3*n-4)*a(n-2) with a(1) = 1 a(2) = 7.
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 4*x^2 + 23*x^3 + 156*x^4 + ... is the g.f. of A007297.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. (End)
Showing 1-4 of 4 results.