cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A160906 Row sums of A159841.

Original entry on oeis.org

1, 5, 29, 176, 1093, 6885, 43796, 280600, 1807781, 11698223, 75973189, 494889092, 3231947596, 21153123932, 138712176296, 911137377456, 5993760282021, 39481335979779, 260377117268087, 1719026098532296, 11360252318843933, 75141910203168229, 497431016774189912
Offset: 0

Views

Author

R. J. Mathar, May 29 2009

Keywords

Crossrefs

Programs

  • Maple
    A160906 := proc(n) add( A159841(n,k), k=0..n) ; end:
    seq(A160906(n), n=0..20) ;
  • Mathematica
    Table[Sum[Binomial[3*n+1, 2*n+k+1], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 25 2017 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*n+1, 2*n+k+1)); \\ Michel Marcus, Oct 31 2017
  • Sage
    a = lambda n: binomial(3*n+1,n)*hypergeometric([1,-n],[2*n+2],-1)
    [simplify(a(n)) for n in range(21)] # Peter Luschny, May 19 2015
    

Formula

a(n) = Sum_{k=0..n} A159841(n,k).
Conjecture: a(2n+1) = A075273(3n).
a(n) = C(3*n+1,n)*Hyper2F1([1,-n],[2*n+2],-1). - Peter Luschny, May 19 2015
Conjecture: 2*n*(2*n-1)*(5*n-4)*a(n) +(-295*n^3+451*n^2-130*n-24)*a(n-1) +24*(5*n+1)*(3*n-4)*(3*n-2)*a(n-2) = 0. - R. J. Mathar, Jul 20 2016
a(n) = [x^n] 1/((1 - 2*x)*(1 - x)^(2*n+1)). - Ilya Gutkovskiy, Oct 25 2017
a(n) ~ 3^(3*n + 3/2) / (sqrt(Pi*n) * 2^(2*n + 1)). - Vaclav Kotesovec, Oct 25 2017
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(2*n+k,k). - Seiichi Manyama, Aug 03 2025
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((2-g) * (3-2*g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 12 2025
G.f.: B(x)^2/(1 + (B(x)-1)/3), where B(x) is the g.f. of A005809. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g*(6-g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 16 2025

A045741 Number of edges in all noncrossing connected graphs on n nodes on a circle.

Original entry on oeis.org

1, 9, 82, 765, 7266, 69930, 679764, 6659037, 65635570, 650194974, 6467730204, 64562259762, 646399361076, 6488447895540, 65276186864232, 657998685456093, 6644370824416530, 67198463606576790, 680568874690989900
Offset: 2

Views

Author

Keywords

Examples

			a(3)=9; indeed, with vertices u, v, w, the noncrossing connected graphs are {uv,uw}, {vu, vw}, {wu, wv}, and {uv, vw, wu} with a total of 9 edges.
		

Crossrefs

Programs

  • Maple
    A045741 := proc(n) local k ; add(binomial(3*n-3,n+k)*binomial(k,n-1),k=0..2*n-3) ; end: seq(A045741(n),n=2..20) ; # R. J. Mathar, Feb 27 2008
  • Mathematica
    Table[Sum[k*Binomial[3*n - 3, n + k]*Binomial[k - 1, k - n + 1], {k, n - 1, 2*n}]/(n - 1), {n,2,50}] (* G. C. Greubel, Jan 30 2017 *)
  • PARI
    for(n=2,50, print1(sum(k=n-1,2*n, k*binomial(3*n-3,n+k)* binomial(k-1,k-n+1))/(n-1), ", ")) \\ G. C. Greubel, Jan 30 2017

Formula

a(n) = Sum_{k = n-1 .. 2*n} (k*binomial(3*n-3, n+k)*binomial(k-1, k-n+1))/(n-1).
a(n) = 1 mod 3 if n in A103457; a(n) = 0 mod 3 otherwise [Eu et al.]. - R. J. Mathar, Feb 27 2008
Recurrence: (n-2)*(n-1)*(6*n-17)*a(n) = 18*(n-2)*a(n-1) + 12*(3*n-8)*(3*n-7)*(6*n-11)*a(n-2). - Vaclav Kotesovec, Dec 29 2012
a(n) ~ (sqrt(3)-1)/sqrt(Pi) * (2^(n-5/2)*3^(3*n/2-3/2))/sqrt(n). - Vaclav Kotesovec, Dec 29 2012
A244038(n) = a(n) + A244039(n) [Gessel]. - N. J. A. Sloane, Jun 28 2014

A244039 a(n) = 2^(2*n-1) * ( binomial(3*n/2,n) + binomial((3*n-1)/2,n) ).

Original entry on oeis.org

1, 5, 39, 338, 3075, 28770, 274134, 2645844, 25781283, 253068530, 2498678754, 24788450076, 246889978062, 2467197059124, 24725226928140, 248396412496488, 2500825206700323, 25225687837101330, 254877697946626410, 2579123090162503500, 26133512970919973850, 265126176290618366460
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2014

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Programs

  • Magma
    [Round(2^(2*n-1)*( Gamma(3*n/2+1)/Gamma(n/2+1) + Gamma((3*n+1)/2)/Gamma((n+1)/2) )/Factorial(n)): n in [0..25]]; // G. C. Greubel, Aug 20 2019
    
  • Maple
    a := n -> 2^(2*n-1)*(binomial(3*n/2,n) + binomial((3*n-1)/2,n));
    seq(a(n), n=0..25);
  • Mathematica
    Table[2^(2n-1)*(Binomial[3n/2, n] + Binomial[(3n-1)/2, n]), {n, 0, 25}] (* Vincenzo Librandi, Jun 29 2014 *)
  • PARI
    a(n) = 2^(2*n-1)*(binomial(3*n/2, n) + binomial((3*n-1)/2, n));
    vector(25, n, n--; a(n)) \\ G. C. Greubel, Aug 20 2019
    
  • Sage
    [2^(2*n-1)*(binomial(3*n/2, n) + binomial((3*n-1)/2, n)) for n in (0..25)] # G. C. Greubel, Aug 20 2019

Formula

From Peter Bala, Mar 04 2022: (Start)
a(n) = [x^n] ( (1 + 2*x)^3/(1 + x) )^n. Cf. A091527.
a(n) = Sum_{k = 0..n} (-1)^k * 2^(n-k) * binomial(3*n,n-k) * binomial(n+k-1,k).
n*(n-1)*(6*n-11)*a(n) = - 18*(n-1)*a(n-1) + 12*(3*n-4)*(3*n-5)*(6*n-5)*a(n-2) with a(0) = 1 and a(1) = 5.
The o.g.f. A(x) = 1 + 5*x + 39*x^2 + 338*x^3 + ... is the diagonal of the bivariate rational function 1/(1 - t*(1 + 2*x)^3/(1 + x)) and hence is an algebraic function over the field of rational functions Q(x) by Stanley 1999, Theorem 6.33, p. 197.
Calculation gives (1 - 108*x^2)*A(x)^3 - (1 + 9*x)*A(x) = x.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. (End)
a(n) = 2^n*binomial(3*n, n)*hypergeom([-n, n], [2*n + 1], 1/2). - Peter Luschny, Mar 07 2022
From Seiichi Manyama, Aug 08 2025: (Start)
a(n) = Sum_{k=0..n} binomial(3*n,k) * binomial(2*n-k,n-k).
a(n) = [x^n] (1+x)^(3*n)/(1-x)^(n+1).
a(n) = [x^n] 1/((1-x)^n * (1-2*x)^(n+1)).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k,k) * binomial(2*n-k-1,n-k). (End)

A386897 a(n) = 4^n * binomial(5*n/2,n).

Original entry on oeis.org

1, 10, 160, 2860, 53760, 1040060, 20500480, 409404600, 8255569920, 167718033340, 3427543285760, 70384350760360, 1451115518361600, 30018413447053080, 622759359440486400, 12951795276279787760, 269947721071617638400, 5637113741080428839100
Offset: 0

Views

Author

Seiichi Manyama, Aug 07 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^k *(-1)^(n-k)*Binomial[5*n+1, k]*Binomial[2*n-k, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2025 *)
    A386897[n_] := 4^n*Binomial[5*n/2, n]; Array[A386897, 20, 0] (* Paolo Xausa, Aug 26 2025 *)
  • PARI
    a(n) = 4^n*binomial(5*n/2, n);

Formula

a(n) == 0 (mod 10) for n > 0.
a(n) = Sum_{k=0..n} binomial(5*n+1,k) * binomial(4*n-k,n-k).
a(n) = [x^n] (1+x)^(5*n+1)/(1-x)^(3*n+1).
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^(3*n+1)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(5*n+1,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(3*n+k,k) * binomial(2*n-k,n-k).
a(n) = [x^n] 1/(1-4*x)^(3*n/2+1).
a(n) = [x^n] (1+4*x)^(5*n/2).
a(n) ~ 2^(n - 1/2) * 5^((5*n+1)/2) / (sqrt(Pi*n) * 3^((3*n+1)/2)). - Vaclav Kotesovec, Aug 07 2025
D-finite with recurrence 3*n*(n-1)*(3*n-4) *(3*n-2)*a(n) -20*(5*n-4) *(5*n-8)*(5*n-2) *(5*n-6)*a(n-2)=0. - R. J. Mathar, Aug 21 2025
O.g.f.: hypergeom([1/5, 2/5, 3/5, 4/5], [1/3, 1/2, 2/3], (12500*x^2)/27) + 10*x*hypergeom([7/10, 9/10, 11/10, 13/10], [5/6, 7/6, 3/2], (12500*x^2)/27). - Karol A. Penson, Aug 26 2025

A371400 Triangle read by rows: T(n, k) = binomial(k + n, k)*binomial(2*n - k, n).

Original entry on oeis.org

1, 2, 2, 6, 9, 6, 20, 40, 40, 20, 70, 175, 225, 175, 70, 252, 756, 1176, 1176, 756, 252, 924, 3234, 5880, 7056, 5880, 3234, 924, 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432, 12870, 57915, 135135, 212355, 245025, 212355, 135135, 57915, 12870
Offset: 0

Views

Author

Peter Luschny, Mar 21 2024

Keywords

Comments

The main diagonal and column 0 of the triangle are the central binomial coefficients, which are the sums of the squares of Pascal's triangle entries. This sum representation can be generalized, and all terms can be seen as sums of coefficients of some polynomials. (See the Example section.)
To see this, consider T(n, k) as the value of the polynomials P(n, k)(x) at x = 1, where P(n, k)(x) = H([-n, -k], [1], x)*H([-n, -n + k], [1], x) and H denotes the hypergeometric sum 2F1. For instance column 0 is given by the row sums of A008459, and column 1 by the row sums of A371401.

Examples

			Triangle starts:
[0]    1;
[1]    2,     2;
[2]    6,     9,     6;
[3]   20,    40,    40,    20;
[4]   70,   175,   225,   175,    70;
[5]  252,   756,  1176,  1176,   756,   252;
[6]  924,  3234,  5880,  7056,  5880,  3234,   924;
[7] 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432;
.
Because of the symmetry, only the sum representation of terms with k <= n/2 are shown.
0:                 [1]
1:               [1+1]
2:             [1+4+1],               [1+4+4]
3:           [1+9+9+1],            [1+9+21+9]
4:      [1+16+36+16+1],       [1+16+66+76+16],        [1+16+76+96+36]
5: [1+25+100+100+25+1], [1+25+160+340+205+25], [1+25+190+460+400+100]
		

Crossrefs

Column 0 and main diagonal are A000984.
Column 1 and subdiagonal are A097070.
Row sums are A045721.
The even bisection of the alternating row sums is A005809.
The central terms are A188662.

Programs

  • Maple
    T := (n, k) -> binomial(k + n, k) * binomial(2*n - k, n):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..8);
  • Mathematica
    T[n_, k_] := Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, -n +k, 1, 1];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}]

Formula

T(n, k) = A046899(n, k) * A092392(n, k).
T(n, k) = A046899(n, k) * A046899(n, n - k).
T(n, k) = A092392(n, k) * A092392(n, n - k).
T(n, k) = A371395(n, k) * (n + 1).
T(n, k) = hypergeom([-n, -k], [1], 1) * hypergeom([-n, -n + k], [1], 1).
2^n*Sum_{k=0..n} T(n, k)*(1/2)^k = A244038(n).
2^n*Sum_{k=0..n} T(n, k)*(-1/2)^k = A371399(n).

A206306 Riordan array (1, x/(1-3*x+2*x^2)).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 7, 6, 1, 0, 15, 23, 9, 1, 0, 31, 72, 48, 12, 1, 0, 63, 201, 198, 82, 15, 1, 0, 127, 522, 699, 420, 125, 18, 1, 0, 255, 1291, 2223, 1795, 765, 177, 21, 1, 0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 06 2012

Keywords

Comments

The convolution triangle of the Mersenne numbers A000225. - Peter Luschny, Oct 09 2022

Examples

			Triangle begins:
  1;
  0,    1;
  0,    3,    1;
  0,    7,    6,     1;
  0,   15,   23,     9,     1;
  0,   31,   72,    48,    12,     1;
  0,   63,  201,   198,    82,    15,    1;
  0,  127,  522,   699,   420,   125,   18,    1;
  0,  255, 1291,  2223,  1795,   765,  177,   21,   1;
  0,  511, 3084,  6562,  6768,  3840, 1260,  238,  24,  1;
  0, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27,  1;
		

Crossrefs

Programs

  • Magma
    function T(n,k) // T = A206306
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      elif k eq 0 then return 0;
      else return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 20 2022
    
  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==0, 0, 3*T[n- 1, k] +T[n-1, k-1] -2*T[n-2, k]]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 20 2022 *)
  • SageMath
    def T(n,k): # T = A206306
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        elif (k==0): return 0
        else: return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 20 2022

Formula

Triangle T(n,k), read by rows, given by (0, 3, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Diagonals sums are even-indexed Fibonacci numbers.
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A204089(n), A204091(n) for x = 0, 1, 2 respectively.
G.f.: (1-3*x+2*x^)/(1-(3+y)*x+2*x^2).
From Philippe Deléham, Nov 17 2013; corrected Feb 13 2020: (Start)
T(n, n) = 1.
T(n+1, n) = 3n = A008585(n).
T(n+2, n) = A062725(n).
T(n,k) = 3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k), T(0,0)=T(1,1)=T(2,2)=1, T(1,0)=T(2,0)=0, T(2,1)=3, T(n,k)=0 if k<0 or if k>n. (End)
From G. C. Greubel, Dec 20 2022: (Start)
Sum_{k=0..n} (-1)^k*T(n,k) = [n=1] - A009545(n).
Sum_{k=0..n} (-2)^k*T(n,k) = [n=1] + A078020(n+1).
T(2*n, n+1) = A045741(n+2), n >= 0.
T(2*n+1, n+1) = A244038(n). (End)

A299855 G.f. C(x)^(1/2) satisfies C(x)^(1/2) - S(x)^(1/2) = 1 such that C'(x)*S(x)^(1/2) = S'(x)*C(x)^(1/2) = 72*x.

Original entry on oeis.org

1, 6, -12, 60, -384, 2772, -21504, 175032, -1474560, 12748164, -112459776, 1008263880, -9160359936, 84151254600, -780341870592, 7294711613040, -68670084612096, 650409360439140, -6193772337561600, 59267126633699880, -569566264641454080, 5494909312181603160, -53198968510406983680, 516695227418183158800, -5033085020810678108160
Offset: 0

Views

Author

Paul D. Hanna, Feb 20 2018

Keywords

Comments

a(n) = -(-1)^n * A244038(n) / (3*n-2) for n>=1.

Examples

			G.f.: C(x)^(1/2) = 1 + 6*x - 12*x^2 + 60*x^3 - 384*x^4 + 2772*x^5 - 21504*x^6 + 175032*x^7 - 1474560*x^8 + 12748164*x^9 - 112459776*x^10 + ...
RELATED SERIES.
C(x) = 1 + 12*x + 12*x^2 - 24*x^3 + 96*x^4 - 504*x^5 + 3072*x^6 - 20592*x^7 + 147456*x^8 - 1108536*x^9 + 8650752*x^10 + ...
S(x) = 36*x^2 - 144*x^3 + 864*x^4 - 6048*x^5 + 46080*x^6 - 370656*x^7 + 3096576*x^8 - 26604864*x^9 + 233570304*x^10 + ...
sqrt(S(x)) = 6*x - 12*x^2 + 60*x^3 - 384*x^4 + 2772*x^5 - 21504*x^6 + 175032*x^7 - 1474560*x^8 + 12748164*x^9 - 112459776*x^10 + ...
where C(x)^(1/2) - S(x)^(1/2) = 1
and C'*sqrt(S) = S'*sqrt(C) = 72*x.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(C=1, S=x^2); for(i=0, n, C = 1 + intformal( 72*x/sqrt(S +x^3*O(x^n)) ); S = intformal( 72*x/sqrt(C) ) ); polcoeff(sqrt(C), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = if(n==0,1, -(-4)^n * binomial(3*n/2,n) / (3*n-2) )}
    for(n=0,30,print1(a(n),", "))

Formula

The functions C = C(x) and S = S(x) satisfy:
(1a) sqrt(C) - sqrt(S) = 1.
(1b) C'*sqrt(S) = S'*sqrt(C) = 72*x.
(1c) C' = 72*x/sqrt(S).
(1d) S' = 72*x/sqrt(C).
Integrals.
(2a) C = 1 + Integral 72*x/sqrt(S) dx.
(2b) S = Integral 72*x/sqrt(C) dx.
(2c) C = 1 + Integral S'*sqrt(C/S) dx.
(2d) S = Integral C'*sqrt(S/C) dx.
Exponentials.
(3a) sqrt(C) = exp( Integral 36*x/(C*sqrt(S)) dx ).
(3b) sqrt(S) = 6*x*exp( Integral 36*x/(S*sqrt(C)) - 1/x dx ).
(3c) C - S = exp( Integral 72*x/(C*sqrt(S) + S*sqrt(C)) dx ).
(3d) C - S = exp( Integral C'*S'/(C*S' + S*C') dx).
Functional equations.
(4a) C = 1/3 - 36*x^2 + (2/3)*C^(3/2).
(4b) S = 36*x^2 - (2/3)*S^(3/2).
Explicit solutions.
(5a) C(x) = 1 + Sum_{n>=1} 2*(-4)^n*binomial(3*n/2,n)/((3*n-2)*(3*n-4)) * x^n.
(5b) S(x) = 36*x^2 + Sum_{n>=3} 18*(-4)^n*(3*n-3)*binomial(3*n/2-2,n)/((3*n-4)*(3*n-6)) * x^n.
(5c) sqrt(C(x)) = 1 + Sum_{n>=1} -(-4)^n * binomial(3*n/2,n)/(3*n-2) * x^n.
Formulas for terms.
a(n) = -(-4)^n * binomial(3*n/2,n) / (3*n-2) for n>=1, with a(0) = 1.

A385639 a(n) = Sum_{k=0..n} binomial(4*n+1,k) * binomial(2*n-k,n-k).

Original entry on oeis.org

1, 7, 69, 748, 8485, 98847, 1171884, 14066808, 170421669, 2079531685, 25520363869, 314653207128, 3894577133356, 48362609654548, 602248101550920, 7517853111444528, 94044248726758821, 1178641094940246897, 14796230460187072719, 186022053254555479500, 2341837809478393341885
Offset: 0

Views

Author

Seiichi Manyama, Aug 07 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[4*n+1, k]*Binomial[2*n-k, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(4*n+1, k)*binomial(2*n-k, n-k));

Formula

a(n) = [x^n] (1+x)^(4*n+1)/(1-x)^(n+1).
a(n) = [x^n] 1/((1-x)^(2*n+1) * (1-2*x)^(n+1)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n+1,k) * binomial(3*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k,k) * binomial(3*n-k,n-k).
a(n) = binomial(2*n, n)*hypergeom([-1-4*n, -n], [-2*n], -1). - Stefano Spezia, Aug 07 2025
a(n) ~ sqrt((187 - 3*sqrt(17)) / (17*Pi*n)) * (51*sqrt(17) - 107)^n / 2^(3*n + 3/2). - Vaclav Kotesovec, Aug 07 2025

A386899 a(n) = Sum_{k=0..n} 3^k * 2^(n-k) * binomial(3*n+1,k) * binomial(2*n-k,n-k).

Original entry on oeis.org

1, 16, 339, 7840, 189295, 4689216, 118155156, 3013479744, 77557234095, 2010176842960, 52394920516939, 1371957494204544, 36062378503314436, 950984592573500800, 25147592297769065400, 666594977732384307840, 17706778517771676847215, 471217399398861925667760
Offset: 0

Views

Author

Seiichi Manyama, Aug 07 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 3^k*2^(n-k)*binomial(3*n+1, k)*binomial(2*n-k, n-k));

Formula

a(n) = [x^n] (1+3*x)^(3*n+1)/(1-2*x)^(n+1).
a(n) = [x^n] 1/((1-3*x) * (1-5*x))^(n+1).
a(n) = Sum_{k=0..n} 5^k * (-2)^(n-k) * binomial(3*n+1,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 5^k * 3^(n-k) * binomial(n+k,k) * binomial(2*n-k,n-k).
a(n) = 2^n*binomial(2*n, n)*hypergeom([-1-3*n, -n], [-2*n], -3/2). - Stefano Spezia, Aug 07 2025

A348618 a(n) = (1+(-1)^n)/2*4^n*(C((3*n)/2-1,n))+(1-(-1)^n)/2*((C((3*n-1)/2,n))*(C(3*n-1,(3*n-1)/2)))/(C(n-1,(n-1)/2)).

Original entry on oeis.org

1, 2, 16, 140, 1280, 12012, 114688, 1108536, 10813440, 106234700, 1049624576, 10418726760, 103817412608, 1037865473400, 10404558274560, 104557533120240, 1052941297385472, 10623352887172620, 107358720517734400, 1086563988284497800, 11011614449734778880
Offset: 0

Views

Author

Vladimir Kruchinin, Oct 25 2021

Keywords

Crossrefs

Cf. A244038.

Programs

  • Maple
    a:= n-> ceil(4^n*binomial(3*n/2, n)/3):
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 25 2021
  • Mathematica
    a[n_] := If[EvenQ[n], 4^n * Binomial[3*n/2 - 1, n], Binomial[(3*n - 1)/2, n] * Binomial[3*n - 1, (3*n - 1)/2] / Binomial[n - 1, (n - 1)/2]]; Array[a, 18, 0] (* Amiram Eldar, Oct 25 2021 *)
  • Maxima
    a(n):=if evenp(n) then 4^n*binomial(3*n/2-1,n) else ((binomial((3*n-1)/2,n))*
        (binomial(3*n-1,(3*n-1)/2)))/binomial(n-1,(n-1)/2);

Formula

G.f.: (288*x^2*cos(arcsin(216*x^2-1)/3))/(sqrt(432*x^2-46656*x^4)*(2*sin(arcsin(216*x^2-1)/3)+1)).
Conjecture: D-finite with recurrence n*(n-1)*a(n) -12*(3*n-2)*(3*n-4)*a(n-2)=0. - R. J. Mathar, Mar 06 2022
Showing 1-10 of 10 results.