Original entry on oeis.org
1, 5, 29, 176, 1093, 6885, 43796, 280600, 1807781, 11698223, 75973189, 494889092, 3231947596, 21153123932, 138712176296, 911137377456, 5993760282021, 39481335979779, 260377117268087, 1719026098532296, 11360252318843933, 75141910203168229, 497431016774189912
Offset: 0
-
A160906 := proc(n) add( A159841(n,k), k=0..n) ; end:
seq(A160906(n), n=0..20) ;
-
Table[Sum[Binomial[3*n+1, 2*n+k+1], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 25 2017 *)
-
a(n) = sum(k=0, n, binomial(3*n+1, 2*n+k+1)); \\ Michel Marcus, Oct 31 2017
-
a = lambda n: binomial(3*n+1,n)*hypergeometric([1,-n],[2*n+2],-1)
[simplify(a(n)) for n in range(21)] # Peter Luschny, May 19 2015
A045741
Number of edges in all noncrossing connected graphs on n nodes on a circle.
Original entry on oeis.org
1, 9, 82, 765, 7266, 69930, 679764, 6659037, 65635570, 650194974, 6467730204, 64562259762, 646399361076, 6488447895540, 65276186864232, 657998685456093, 6644370824416530, 67198463606576790, 680568874690989900
Offset: 2
a(3)=9; indeed, with vertices u, v, w, the noncrossing connected graphs are {uv,uw}, {vu, vw}, {wu, wv}, and {uv, vw, wu} with a total of 9 edges.
-
A045741 := proc(n) local k ; add(binomial(3*n-3,n+k)*binomial(k,n-1),k=0..2*n-3) ; end: seq(A045741(n),n=2..20) ; # R. J. Mathar, Feb 27 2008
-
Table[Sum[k*Binomial[3*n - 3, n + k]*Binomial[k - 1, k - n + 1], {k, n - 1, 2*n}]/(n - 1), {n,2,50}] (* G. C. Greubel, Jan 30 2017 *)
-
for(n=2,50, print1(sum(k=n-1,2*n, k*binomial(3*n-3,n+k)* binomial(k-1,k-n+1))/(n-1), ", ")) \\ G. C. Greubel, Jan 30 2017
A244039
a(n) = 2^(2*n-1) * ( binomial(3*n/2,n) + binomial((3*n-1)/2,n) ).
Original entry on oeis.org
1, 5, 39, 338, 3075, 28770, 274134, 2645844, 25781283, 253068530, 2498678754, 24788450076, 246889978062, 2467197059124, 24725226928140, 248396412496488, 2500825206700323, 25225687837101330, 254877697946626410, 2579123090162503500, 26133512970919973850, 265126176290618366460
Offset: 0
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
-
[Round(2^(2*n-1)*( Gamma(3*n/2+1)/Gamma(n/2+1) + Gamma((3*n+1)/2)/Gamma((n+1)/2) )/Factorial(n)): n in [0..25]]; // G. C. Greubel, Aug 20 2019
-
a := n -> 2^(2*n-1)*(binomial(3*n/2,n) + binomial((3*n-1)/2,n));
seq(a(n), n=0..25);
-
Table[2^(2n-1)*(Binomial[3n/2, n] + Binomial[(3n-1)/2, n]), {n, 0, 25}] (* Vincenzo Librandi, Jun 29 2014 *)
-
a(n) = 2^(2*n-1)*(binomial(3*n/2, n) + binomial((3*n-1)/2, n));
vector(25, n, n--; a(n)) \\ G. C. Greubel, Aug 20 2019
-
[2^(2*n-1)*(binomial(3*n/2, n) + binomial((3*n-1)/2, n)) for n in (0..25)] # G. C. Greubel, Aug 20 2019
A386897
a(n) = 4^n * binomial(5*n/2,n).
Original entry on oeis.org
1, 10, 160, 2860, 53760, 1040060, 20500480, 409404600, 8255569920, 167718033340, 3427543285760, 70384350760360, 1451115518361600, 30018413447053080, 622759359440486400, 12951795276279787760, 269947721071617638400, 5637113741080428839100
Offset: 0
-
Table[Sum[2^k *(-1)^(n-k)*Binomial[5*n+1, k]*Binomial[2*n-k, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2025 *)
A386897[n_] := 4^n*Binomial[5*n/2, n]; Array[A386897, 20, 0] (* Paolo Xausa, Aug 26 2025 *)
-
a(n) = 4^n*binomial(5*n/2, n);
A371400
Triangle read by rows: T(n, k) = binomial(k + n, k)*binomial(2*n - k, n).
Original entry on oeis.org
1, 2, 2, 6, 9, 6, 20, 40, 40, 20, 70, 175, 225, 175, 70, 252, 756, 1176, 1176, 756, 252, 924, 3234, 5880, 7056, 5880, 3234, 924, 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432, 12870, 57915, 135135, 212355, 245025, 212355, 135135, 57915, 12870
Offset: 0
Triangle starts:
[0] 1;
[1] 2, 2;
[2] 6, 9, 6;
[3] 20, 40, 40, 20;
[4] 70, 175, 225, 175, 70;
[5] 252, 756, 1176, 1176, 756, 252;
[6] 924, 3234, 5880, 7056, 5880, 3234, 924;
[7] 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432;
.
Because of the symmetry, only the sum representation of terms with k <= n/2 are shown.
0: [1]
1: [1+1]
2: [1+4+1], [1+4+4]
3: [1+9+9+1], [1+9+21+9]
4: [1+16+36+16+1], [1+16+66+76+16], [1+16+76+96+36]
5: [1+25+100+100+25+1], [1+25+160+340+205+25], [1+25+190+460+400+100]
Column 0 and main diagonal are
A000984.
Column 1 and subdiagonal are
A097070.
The even bisection of the alternating row sums is
A005809.
-
T := (n, k) -> binomial(k + n, k) * binomial(2*n - k, n):
seq(print(seq(T(n, k), k = 0..n)), n = 0..8);
-
T[n_, k_] := Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, -n +k, 1, 1];
Table[T[n, k], {n, 0, 7}, {k, 0, n}]
A206306
Riordan array (1, x/(1-3*x+2*x^2)).
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 7, 6, 1, 0, 15, 23, 9, 1, 0, 31, 72, 48, 12, 1, 0, 63, 201, 198, 82, 15, 1, 0, 127, 522, 699, 420, 125, 18, 1, 0, 255, 1291, 2223, 1795, 765, 177, 21, 1, 0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 3, 1;
0, 7, 6, 1;
0, 15, 23, 9, 1;
0, 31, 72, 48, 12, 1;
0, 63, 201, 198, 82, 15, 1;
0, 127, 522, 699, 420, 125, 18, 1;
0, 255, 1291, 2223, 1795, 765, 177, 21, 1;
0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1;
0, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27, 1;
-
function T(n,k) // T = A206306
if k lt 0 or k gt n then return 0;
elif k eq n then return 1;
elif k eq 0 then return 0;
else return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k);
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 20 2022
-
# Uses function PMatrix from A357368.
PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
-
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==0, 0, 3*T[n- 1, k] +T[n-1, k-1] -2*T[n-2, k]]]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 20 2022 *)
-
def T(n,k): # T = A206306
if (k<0 or k>n): return 0
elif (k==n): return 1
elif (k==0): return 0
else: return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k)
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 20 2022
A299855
G.f. C(x)^(1/2) satisfies C(x)^(1/2) - S(x)^(1/2) = 1 such that C'(x)*S(x)^(1/2) = S'(x)*C(x)^(1/2) = 72*x.
Original entry on oeis.org
1, 6, -12, 60, -384, 2772, -21504, 175032, -1474560, 12748164, -112459776, 1008263880, -9160359936, 84151254600, -780341870592, 7294711613040, -68670084612096, 650409360439140, -6193772337561600, 59267126633699880, -569566264641454080, 5494909312181603160, -53198968510406983680, 516695227418183158800, -5033085020810678108160
Offset: 0
G.f.: C(x)^(1/2) = 1 + 6*x - 12*x^2 + 60*x^3 - 384*x^4 + 2772*x^5 - 21504*x^6 + 175032*x^7 - 1474560*x^8 + 12748164*x^9 - 112459776*x^10 + ...
RELATED SERIES.
C(x) = 1 + 12*x + 12*x^2 - 24*x^3 + 96*x^4 - 504*x^5 + 3072*x^6 - 20592*x^7 + 147456*x^8 - 1108536*x^9 + 8650752*x^10 + ...
S(x) = 36*x^2 - 144*x^3 + 864*x^4 - 6048*x^5 + 46080*x^6 - 370656*x^7 + 3096576*x^8 - 26604864*x^9 + 233570304*x^10 + ...
sqrt(S(x)) = 6*x - 12*x^2 + 60*x^3 - 384*x^4 + 2772*x^5 - 21504*x^6 + 175032*x^7 - 1474560*x^8 + 12748164*x^9 - 112459776*x^10 + ...
where C(x)^(1/2) - S(x)^(1/2) = 1
and C'*sqrt(S) = S'*sqrt(C) = 72*x.
-
{a(n) = my(C=1, S=x^2); for(i=0, n, C = 1 + intformal( 72*x/sqrt(S +x^3*O(x^n)) ); S = intformal( 72*x/sqrt(C) ) ); polcoeff(sqrt(C), n)}
for(n=0,30,print1(a(n),", "))
-
{a(n) = if(n==0,1, -(-4)^n * binomial(3*n/2,n) / (3*n-2) )}
for(n=0,30,print1(a(n),", "))
A385639
a(n) = Sum_{k=0..n} binomial(4*n+1,k) * binomial(2*n-k,n-k).
Original entry on oeis.org
1, 7, 69, 748, 8485, 98847, 1171884, 14066808, 170421669, 2079531685, 25520363869, 314653207128, 3894577133356, 48362609654548, 602248101550920, 7517853111444528, 94044248726758821, 1178641094940246897, 14796230460187072719, 186022053254555479500, 2341837809478393341885
Offset: 0
-
Table[Sum[Binomial[4*n+1, k]*Binomial[2*n-k, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2025 *)
-
a(n) = sum(k=0, n, binomial(4*n+1, k)*binomial(2*n-k, n-k));
A386899
a(n) = Sum_{k=0..n} 3^k * 2^(n-k) * binomial(3*n+1,k) * binomial(2*n-k,n-k).
Original entry on oeis.org
1, 16, 339, 7840, 189295, 4689216, 118155156, 3013479744, 77557234095, 2010176842960, 52394920516939, 1371957494204544, 36062378503314436, 950984592573500800, 25147592297769065400, 666594977732384307840, 17706778517771676847215, 471217399398861925667760
Offset: 0
-
a(n) = sum(k=0, n, 3^k*2^(n-k)*binomial(3*n+1, k)*binomial(2*n-k, n-k));
A348618
a(n) = (1+(-1)^n)/2*4^n*(C((3*n)/2-1,n))+(1-(-1)^n)/2*((C((3*n-1)/2,n))*(C(3*n-1,(3*n-1)/2)))/(C(n-1,(n-1)/2)).
Original entry on oeis.org
1, 2, 16, 140, 1280, 12012, 114688, 1108536, 10813440, 106234700, 1049624576, 10418726760, 103817412608, 1037865473400, 10404558274560, 104557533120240, 1052941297385472, 10623352887172620, 107358720517734400, 1086563988284497800, 11011614449734778880
Offset: 0
-
a:= n-> ceil(4^n*binomial(3*n/2, n)/3):
seq(a(n), n=0..20); # Alois P. Heinz, Oct 25 2021
-
a[n_] := If[EvenQ[n], 4^n * Binomial[3*n/2 - 1, n], Binomial[(3*n - 1)/2, n] * Binomial[3*n - 1, (3*n - 1)/2] / Binomial[n - 1, (n - 1)/2]]; Array[a, 18, 0] (* Amiram Eldar, Oct 25 2021 *)
-
a(n):=if evenp(n) then 4^n*binomial(3*n/2-1,n) else ((binomial((3*n-1)/2,n))*
(binomial(3*n-1,(3*n-1)/2)))/binomial(n-1,(n-1)/2);
Showing 1-10 of 10 results.
Comments