cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103579 Sophie Germain primes that are not Lucasian primes: primes p not 3 (mod 4) such that 2p + 1 is prime.

Original entry on oeis.org

2, 5, 29, 41, 53, 89, 113, 173, 233, 281, 293, 509, 593, 641, 653, 761, 809, 953, 1013, 1049, 1229, 1289, 1409, 1481, 1601, 1733, 1889, 1901, 1973, 2069, 2129, 2141, 2273, 2393, 2549, 2693, 2741, 2753, 2969, 3329, 3389, 3413, 3449, 3593, 3761, 3821, 4073, 4349, 4373, 4409, 4481, 4733, 4793, 5081
Offset: 1

Views

Author

Jonathan Vos Post, Mar 23 2005

Keywords

Comments

For n > 1, the prime 2*a(n) + 1 is the smallest prime divisor of (2^a(n) + 1)/3. - Emmanuel Vantieghem, Aug 12 2018
Primes p such that 2*p+1 divides 2^p+1. - Hilko Koning, Sep 21 2021
Subset of Josephus_2 primes {A163782} that are themselves also prime. - Joe Nellis, Dec 27 2022

Crossrefs

Programs

  • Maple
    select(t -> isprime(t) and isprime(2*t+1),[2,seq(4*k+1,k=1..10000)]); # Robert Israel, May 20 2015
  • Mathematica
    Select[Prime[Range[500]], PrimeQ[2#+ 1 ] && Mod[#, 4] != 3 &] (* Harvey P. Dale, Jun 15 2013 *)
    Select[4Range[100] + 1, PrimeQ[#] && PrimeQ[2# + 1] &] (* Alonso del Arte, Jun 01 2019 *)
  • PARI
    forprime(p=2,10^4,if((p%4!=3)&&isprime(2*p+1),print1(p,", "))); \\ Joerg Arndt, Nov 18 2014

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Jul 07 2009