A103604 a(n) = binomial(n+6,6) * binomial(n+10,6).
210, 3234, 25872, 144144, 630630, 2312310, 7399392, 21237216, 55747692, 135795660, 310390080, 671571264, 1385115732, 2738894004, 5216940960, 9610154400, 17178150990, 29881321470, 50707697040, 84126042000, 136704818250, 217946538810, 341398774080, 526116951360
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Programs
-
Magma
A103604:= func< n | Binomial(n+6,6)*Binomial(n+10,6) >; [A103604(n): n in [0..30]]; // G. C. Greubel, Mar 05 2025
-
Mathematica
Table[Binomial[n+6,6]Binomial[n+10,6],{n,0,30}] (* or *) LinearRecurrence[ {13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1},{210,3234,25872, 144144,630630,2312310,7399392,21237216,55747692,135795660,310390080, 671571264,1385115732},30] (* Harvey P. Dale, Apr 18 2019 *)
-
PARI
a(n) = binomial(n+6,6)*binomial(n+10,6) \\ Colin Barker, Jul 01 2015
-
PARI
Vec(-42*(5*x^2+12*x+5)/(x-1)^13 + O(x^30)) \\ Colin Barker, Jul 01 2015
-
SageMath
def A103604(n): return binomial(n+6,6)*binomial(n+10,6) print([A103604(n) for n in range(31)]) # G. C. Greubel, Mar 05 2025
Formula
G.f.: 42*(5+12*x+5*x^2) / (1-x)^13. - Colin Barker, Jul 01 2015
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 60*Pi^2 - 10445899/17640.
Sum_{n>=0} (-1)^n/a(n) = 447173/2205 - 2048*log(2)/7. (End)