A024364 Ordered perimeters of primitive Pythagorean triangles.
12, 30, 40, 56, 70, 84, 90, 126, 132, 144, 154, 176, 182, 198, 208, 220, 234, 240, 260, 286, 306, 312, 330, 340, 374, 380, 390, 408, 418, 420, 442, 456, 462, 476, 494, 510, 532, 544, 546, 552, 570, 598, 608, 644, 646, 650, 672, 684, 690, 700, 714, 736, 756
Offset: 1
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (duplicates removed by Sean A. Irvine)
- Leon Bernstein, On primitive Pythagorean triangles with equal perimeters, The Fibonacci Quarterly 27.1 (1989) 2-6 (and the earlier Bernstein paper 20.3 (1982) 227-241, see A024408).
- Ron Knott, Pythagorean Triples and Online Calculators
Programs
-
Maple
isA024364 := proc(an) local r::integer,s::integer ; for r from floor((an/4)^(1/2)) to floor((an/2)^(1/2)) do for s from r-1 to 1 by -2 do if 2*r*(r+s) = an and gcd(r,s) < 2 then RETURN(true) ; fi ; if 2*r*(r+s) < an then break ; fi ; od ; od : RETURN(false) ; end : for n from 2 to 400 do if isA024364(n) then printf("%d,",n) ; fi ; od ; # R. J. Mathar, Jun 08 2006
-
Mathematica
isA024364[an_] := Module[{r, s}, For[r = Floor[(an/4)^(1/2)], r <= Floor[(an/2)^(1/2)], r++, For[s = r - 1, s >= 1, s -= 2, If[2r(r + s) == an && GCD[r, s] < 2, Return[True]]; If[2r(r + s) < an, Break[]]]]; Return[False]]; Select[Range[2, 1000], isA024364] (* Jean-François Alcover, May 24 2024, after R. J. Mathar *)
-
PARI
select( {is_A024364(n)=my(k=valuation(n,2), o=n>>k); k && fordiv(o, r, r^2<<(k-1) >= o && return; r^2<
o && gcd(r,o/r)==1 && return(1))}, [1..400]*2) \\ M. F. Hasler, Jul 08 2025
Formula
a(n) = 2*A020886(n).
Comments